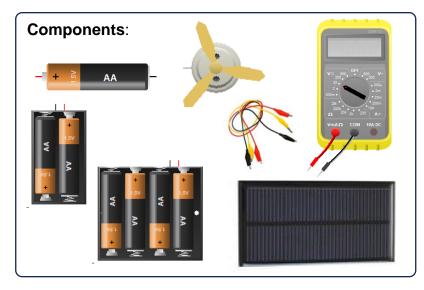

Component	Name	Symbol	Description
	Multimeter (Voltmeter, Ammeter, Ohmmeter)	$(\mathbf{V}^{\mathbf{T}} \land \mathbf{A}^{\mathbf{T}})$	A tool for measuring voltage, current, resistance, conductivity
	Crocodile leads		Used to temporarily connect components together
	Battery holders and batteries		Converts stored chemical energy into electrical energy
	MES filament bulb	\diamond \diamond	Produces light by passing current through a thin filament
	Resistor		Limits the flow of current in a circuit
	Motor	M	Converts electrical energy into mechanical energy
	Solar Cell	+	Converts light energy into electrical energy
	LED bulb		Energy efficient polarised bulb

Activity 2: Testing conductors and insulators

Task: Use a multimeter as a continuity tester to check if a material is a conductor or an insulator

- 1. From the test materials, predict in the results table if they are conductors or insulators
- 2. Attach red probe to $V\Omega mA$ and black probe to COM
- 3. Set dial on multimeter to 🚺

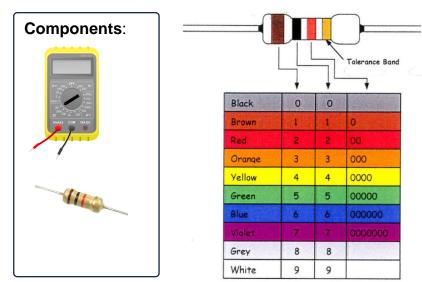


- 4. Touch the ends of the probes together. The multimeter should make a noise when a current is flowing.
- 5. Use the probes to check the conductivity of the test materials and record results in the table

Results				
Test material	Predicted	Conductor	Insulator	
Plastic ruler			\checkmark	

Observations

Activity 3: Measuring Voltage


Observations

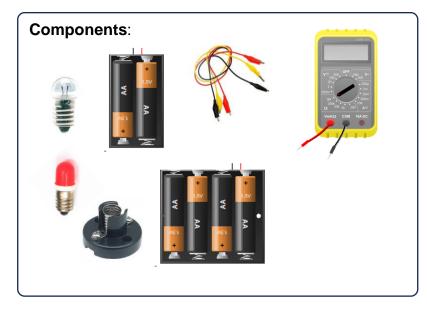
Task: Use a multimeter as a voltmeter to measure the voltage of a range of power sources.

- 1. Attach red probe to V Ω mA and black probe to COM
- 2. Set dial on multimeter to 20V (DC)
- 3. In results table fill in power source name and your predicted voltage
- 4. Measure the voltage of the power source using the probes of the multimeter and record your results

Results				
Power Source	Predicted Voltage (V)	Measured Voltage (V)		
Single AA Battery	1.5V			

Activity 4: Measuring Resistance

Task: Use a multimeter as an Ohmmeter to measure the resistance of a selection of resistors.

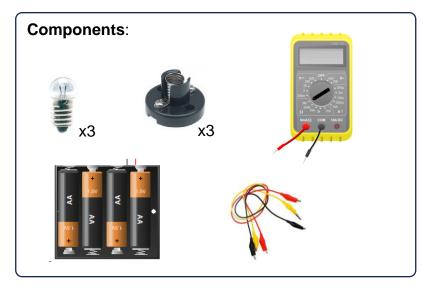

- 1. In the results table fill in the colours on the resistor and use the colour code to calculate its resistance
- 2. Attach red probe to V Ω mA and black probe to COM
- 3. Set dial on multimeter to 2000K $\boldsymbol{\Omega}$
- 4. Hold the ends of the resistor against the probes
- 5. Measure the resistance of the resistor and record your results.

Note: You may need to change the setting on the multimeter from 2000k, 200k, 20k, 2000, 200 until you get an accurate reading.

Results			
Resistor colours	Calculated Resistance (Ω)	Measured Resistance (Ω)	
Yellow, violet, orange	47000Ω		

Observations

Activity 5: Build a simple circuit

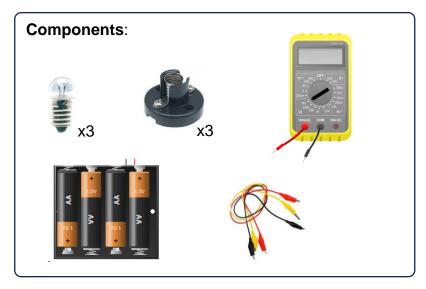

Observations

Task: Build a simple circuit using a battery pack and a MES filament bulb

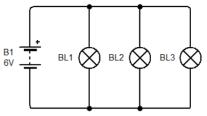
- 1. Attach a crocodile lead from the battery pack to one of the MES bulb holder connections
- 2. Attach another crocodile lead from the other MES bulb holder connection back to the battery pack
- 3. Measure the voltage across the battery pack and the MES filament bulb
- 4. Measure the current in the circuit
- 5. Repeat the steps using different power sources and the LED bulb
- 6. Record your observations and draw a circuit diagram for one of the circuits

Circuit diagram including voltmeter and ammeter

Activity 6: Build a series circuit with 3 MES bulbs


Observations

Task: Using the components
build the circuit as shown in
the circuit diagram.Bl1
BL1
BL2
BL3


- 1. Use the multimeter to measure the voltage and resistance across the components
- 2. Measure the current at number of points in the circuit
- 3. Record your results in the table and note your observations

Results				
Component	Measured Voltage (V)	Measured Current (I)	Measured Resistance (R)	
Battery pack (B1)				
Bulb 1 (BL1)				
Bulb 2 (BL2)				
Bulb 3 (BL3)				
Bulb 1 + Bulb 2 + Bulb 3				

Activity 7: Build a parallel circuit with 3 MES bulbs

Task: Using the componentsbuild the circuit as shown inthe circuit diagram.

- 1. Use the multimeter to measure the voltage and resistance across the components
- 2. Measure the current at number of points in the circuit
- 3. Record your results in the table and note your observations
- 4. Compare results and observations to those from the series circuit

Observatior	າຣ		

Results				
Component	Measured Voltage (V)	Measured Current (I)	Measured Resistance (R)	
Battery pack (B1)				
Bulb 1 (BL1)				
Bulb 2 (BL2)				
Bulb 3 (BL3)				