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Schedule

09:30 - 11:00 Welcome and Introductions 

A concepts through Modelling approach to Algorithms

11:00 - 11:30 Tea and Coffee

11:30 - 13:15 Mathematical Modelling Two-Particle Kinematics Problems

13:15 - 14:15 Lunch

14:15 – 16:00 Exploring Differential Equations through the lens of 

Mathematical Modelling



Key Messages
Core to the specification is a non-

linear approach empowered by the 

use of rich pedagogy which promotes 

the making of connections between 

various Applied Mathematics learning 

outcomes.

Strand 1 is the unifying strand and 

emphasises the importance of 

utilising mathematical modelling 

across all learning outcomes.

Applied Mathematics is rooted in authentic 

problems as a context for learning about the 

application of Mathematics to design solutions 

for real-world problems and to develop 

problem solving skills applicable to a variety of 

disciplines.



Structure of the Specification



Overview of the Unifying Strand



Assessment & Coursework

Modelling 

Project

20%

Written Assessment

80%

Ordinary and Higher



Concepts through Modelling
Explore a rich modelling problem 

and, as the need arises, develop 

understanding of new mathematical 

concepts through instruction, guided 

discovery, research, etc.

Concepts then Modelling
Explore a number of mathematical 

concepts through suitable tasks, 

word problems etc., then solve a rich 

modelling problem. In exploring these 

tasks, modelling competencies may 

also be developed.

Complete a 

full modelling 

cycle

Focus on a 

subset of 

competencies

1 2

Complete a 

full modelling 

cycle

Focus on a 

subset of 

competencies

Approaches To Mathematical 
Modelling in The Classroom



Mathematical Modelling Cycle

Formulating 

Problems

Evaluating 

Solutions

Translate to 

Mathematics

Computing 

Solutions

Mathematical 

Modelling



Senior Cycle Vision & Applied 
Mathematics

What are the benefits of studying Applied Mathematics 

and how does this fit in to the overall Senior Cycle 

vision and development of key skills? 



Session 1
A Concepts through Modelling Approach 

to Algorithms



By The End of This Session You Will 
Have:

Experienced a constructivist approach to learning and 

teaching algorithms

Explored the use of algorithms to solve authentic real-

world problems

Made distinctions between the three algorithms and 

their applications

Engaged in the four stages of the modelling cycle to 

develop students’ understanding of Prim’s, Kruskal’s 

and Dijkstra’s algorithms



Interpreting a Real-World Problem

Problem Statement: 
Aoife, an Irish fashion designer, based in 

Dublin is looking to expand her business in 

Europe. 

She plans to visit four of the top fashion 

capitals – London, Milan, Berlin & Paris. 

Aoife will start in Dublin and visit each city. 

What route should she take, in order to 

minimise travel time between cities? 

Concepts through Modelling

2 “determine what assumptions are 

necessary to simplify the problem 

situation”  Specification p. 16



Flying around Europe

Concepts through Modelling

2

Time (mins) Dublin Berlin Milan London Paris

Dublin - 150 145 75 100

Berlin 150 - 100 130 105

Milan 145 100 - 125 95

London 75 130 125 - 80

Paris 100 105 95 80 -

“determine what assumptions are 

necessary to simplify the problem 

situation”  Specification p. 16



Flying around Europe

Concepts through Modelling

2
“translate the information given in the 

problem together with the assumptions 

into a mathematical model that can be 

solved” Specification p. 16

“represent real-world situations in the 

form of a network” Specification p. 17



Flying around Europe

Concepts through Modelling

2

Formulating 

Problems

Evaluating 

Solutions

Translate to 

Mathematics

Computing 

Solutions

Mathematical 

Modelling

What is the minimum spanning tree for the 

network?

“compute a solution using appropriate 

mathematics” Specification p. 16

“use appropriate algorithms to find 

minimum spanning trees”  

Specification p. 17



Flying around Europe

Concepts through Modelling

2

What are the limitations to this model?

How could we refine the model?

“refine a model and use it to predict a 

better solution to the problem; iterate 

the process ” Specification p. 16

The minimum 

spanning tree of this 

network produced a 

path from Dublin to 

Berlin. Will this always 

happen?



Describe the Best Approach

Considering the approach you used to create the 
minimum spanning tree (MST) for the flights 
network, create a step-by-step guide for creating a 
minimum spanning tree for any network

How might your students describe their approach?



Describe the Best Approach

2. Find the next edge of 

least weight. If it would 

form a cycle with the 

edges already selected, 

don’t choose it. If not 

then add it to the MST

1. Select the edge of 

least weight

3. If there is a choice of 

equal edges, it has no 

effect which you choose 

first

4. Repeat step 2 until all 

vertices are connected

1. Pick any vertex/node 

(unless a predetermined 

one is indicated)

Kruskal’s 
Algorithm

Prim’s 
Algorithm

2. Find all the edges that 

connect the tree to new 

nodes, select the 

minimum and add it to 

the tree, ensuring to 

avoid cycles

3. Keep repeating 

step 2 until we get a 

minimum spanning 

tree with all nodes 

connected and 

cycles avoided

“Use algorithms to solve problems ” 

Specification p. 17



Which algorithm should I use?
“Justify the use of algorithms in terms 
of correctness ” Specification p. 17

Prim’s Algorithm Kruskal’s Algorithm

Starts from a single vertex 
and adds edges one at a 
time

Sorts edges by weight and 
adds them to the tree if 
they don't create a cycle 

Generally faster for dense 
graphs

Works well with sparse 
graphs, does not require a 
starting vertex



Interpreting a Real-World Problem

Problem Statement: 
On her trip around Europe, the Dublin fashion 

designer arrives in London Heathrow airport to 

travel to their next destination. 

On arrival, Aoife is made aware that her flight is 

cancelled. The only two options are to book 

another flight from Heathrow tomorrow morning 

or travel to London Stanstead airport to make a 

flight taking off in 4 hours.

The fashion designer decides to make the trip to 

Stansted. What is the optimal route?

Concepts through Modelling

2



Heathrow to Stansted

Concepts through Modelling

2 “determine what assumptions are 

necessary to simplify the problem 

situation”  Specification p. 16



Heathrow to Stansted

Concepts through Modelling

2
“translate the information given in the 

problem together with the assumptions 

into a mathematical model that can be 

solved” Specification p. 16

“represent real-world situations in the 

form of a network” Specification p. 17



Heathrow to Stansted

Concepts through Modelling

2

Formulating 

Problems

Evaluating 

Solutions

Translate to 

Mathematics

Computing 

Solutions

Mathematical 

Modelling

“compute a solution using appropriate 

mathematics” Specification p. 16

“use appropriate algorithms to find 

minimum spanning trees”  

Specification p. 17
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Heathrow to Stansted

Concepts through Modelling

2

What are the limitations to this model?

How does it compare to real-life data?

How could we refine the model?

“refine a model and use it to predict a 

better solution to the problem; iterate 

the process ” Specification p. 16



Kruskal’s Algorithm
Prim’s Algorithm

Dijkstra’s Algorithm

Starts with an edge

Starts with a vertex

Creates a MST

Identifies a 
shortest path

Follows a formal 
algorithm

Follows a step-by-step 
method

Can be used in 
Mathematical 
Modelling

Used to solve 
authentic problems

More suitable for 
dense graphs

Can be refined to 
improve the model

Could be integrated 
with other strands

Other (Type your 
comment)

Reflections on Algorithms



Reflection

What did you notice about the learning and teaching 

approaches in this session?

What are some of the benefits for students of using 

approaches like this?



Session 2
Mathematically Modelling Two-Particle 

Kinematics problems



By The End of This Session You Will 
Have:

Developed a deeper understanding of how to present 

problems which will develop students’ modelling skills 

and competencies

Experienced a constructivist teaching approach to 

actively involve students in deriving the equations for 

constant acceleration

Reflected on approaches to planning teaching and 

learning tasks

Engaged in the four stages of the modelling cycle to 

develop students’ understanding of two-particle 

problems



Interpreting a Real-World Problem

Concepts through Modelling

2

Problem Statement: 
James is a passenger on board a bus in 

London. He observes a man running to 

catch the bus as they are taking off from 

the bus stop.

He sees the man give up, but wonders, 

was it possible for the man to catch the 

bus?

“Engaging with real problems is 

motivating for students; it allows them 

to see the relevance of mathematics  

to situations that are important in their 

lives.” Specification p. 13



Can the man catch the bus?

Problem Statement: 
James is a passenger on board a bus in 

London. He observes a man running to 

catch the bus as they are taking off from 

the bus stop.

He sees the man give up, but wonders, 

was it possible for the man to catch the 

bus?

What background information is required by students to 

model an answer to this question?

Concepts through Modelling

2 “Modelling problems require the 

solver to research the situation 

themselves, make reasonable 

assumptions, decide which 

variables will affect the solution, 

and develop a model that 

provides a solution that best 

describes the situation.” 

Specification p. 10



Analysing the motion of the bus

Concepts through Modelling

2
“use abstraction to describe systems 

and to explain the relationship 

between wholes and parts”  

Specification p. 16

As the bus travels between the next two stops, 

James uses google maps data to track the 

motion of the bus. 

Prior JC knowledge

What might students do next with this 

information, based on their JC Maths 

knowledge?

How might they draw the corresponding 

distance-time graph?

How might they describe the different 

stages of motion?

Time (s) Distance (m)

0 0

20 80

25 132.5

60 587.5

85 750



Building on prior knowledge

Concepts through Modelling

2
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“describe the motion of a particle in 1D 

[In a straight line] using words, 

diagrams, numbers, graphs and 

equations” Specification p. 16

 

Time (s) Distance (m)

0 0

20 80

25 132.5

60 587.5

85 750



Building on prior knowledge

Concepts through Modelling

2

 

“Learning outcomes promote 

teaching and learning processes that 

develop students’ knowledge and 

understanding incrementally”

Specification p. 14

How do the graphs of the bus's motion relate to one another?
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Building on prior knowledge

By interpreting the different sections of the bus’s velocity-time graph we can 

learn a lot about it’s motion

Concepts through Modelling

2

Section of the Graph Slope Velocity Acceleration 

1 Positive Increasing Positive 
2 Positive Increasing Positive 
3 Zero Constant Zero 
4 Negative Decreasing Negative 
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Using the motion of the bus to create 
an expression for final velocity, v

On the rest of the bus journey, James kept track of how long it took the bus to reach 
certain velocities . Can you create a general expression for final velocity, v, involving 

the parameters in the graph?

Concepts through Modelling

2



Using the motion of the bus to create 
an expression for final velocity, v
Concepts through Modelling

2

acceleration = 
𝑪𝒉𝒂𝒏𝒈𝒆 𝒊𝒏 𝒗𝒆𝒍𝒐𝒄𝒊𝒕𝒚

𝑪𝒉𝒂𝒏𝒈𝒆 𝒊𝒏 𝒕𝒊 𝒆
 = slope =

𝑹𝒊𝒔𝒆

𝑹𝒖𝒏
 

𝑎 =
8 − 0

20 − 0

        𝑎 =
2

5
 𝑚 𝑠 2

𝑎 =
12 − 8

20 − 0

        𝑎 =
1

5
 𝑚 𝑠 2

Generalising
𝑎 =

𝑣 − 𝑢

𝑡 − 0
        𝑎𝑡 = 𝑣 − 𝑢

𝒖 + 𝒂𝒕 = 𝒗



Connecting velocity-time graphs with 
distance travelled

In the velocity-time graphs shown, what conclusions could you make about the 
distance travelled in each?

Concepts through Modelling

2 “The focus on the experiential approach 

to teaching and learning, which is 

central to applied mathematics, means 

that students can be engaged in 

learning activities that complement their 

own needs and ways of learning.” 

Specification p. 14



Using the motion of the bus to create 
an expression for displacement, s
Concepts through Modelling

2

Area under graph from t = 0 s to t = 20 s

𝑠20= Area of        + Area of 
𝑠20 = (20)(8)         + ½ (20)(12 - 8)
𝑠20 = 160              + 40                    
𝑠20 = 200 m

Area under graph from t = 0 s to t = t s

𝑠𝑡  = Area of        + Area of 
𝑠𝑡  = (u)(t)         + ½ (t)(v - u)
𝑠𝑡  = ut              +  ½ (t)(at)                    
𝒔𝒕 = ut + ½ a𝒕𝟐 

Generalising

v = u + at



Using the motion of the bus to 
construct 𝑣2 = 𝑢2 + 2𝑎𝑠
Concepts through Modelling

2

𝑠20 = (
8+12

2
 20

𝑠20 = 200 𝑚

Generalising

v = u + at

𝑠𝑡 = (
𝑢+𝑣

2
 𝑡

also

𝑠𝑡 = (
𝑢+𝑣

2
 

𝑣  𝑢

𝑎

𝑠𝑡 = 
𝑣2   𝑢2

2𝑎

 𝒗𝟐 =  𝒖𝟐 +𝟐𝒂𝒔



Can the man catch the bus?

Concepts through Modelling

2

Formulating the problem:

❑ What variables (factors) are relevant to the 

problem?

❑ Can you simplify the problem to make it more 

manageable?

❑ What assumptions will you make?

Translating to Mathematics:

❑ What mathematical approach will you 

use to solve the problem and why?

❑ Where will your assumptions and 

variables be used in your model?

Computing solution:

❑ How did you calculate your solution and what 

conclusions can you make from it?

❑ Explain the relationship between your solution 

and the original problem statement

How might your students model a 
solution to this question?

Evaluate the Solution:

❑ Does your answer make sense?

❑ How accurate/reliable is your solution 

based on your assumptions?

❑ Can you refine your assumptions to 

improve your solution?



Can the man catch the bus?

Possible student 
approach

Refined Question:
What is the maximum distance the bus can be ahead of the man so he can catch it?

Assumptions:
o The man is running at a constant velocity

o Time to jump onto the bus is negligible

o The bus is accelerating at a constant rate from rest

Variables/Constants:
o Length of bus = 12 m (research)

o 𝑣𝑚𝑎𝑛 = 4 𝑚 𝑠 1 (research)

o 𝑎𝑏𝑢𝑠 = 0.5 𝑚 𝑠 2 (average of all data collected)

o Distance the bus is ahead at start = d

o The time the man catches the bus = t

Formulating the problem:

❑ What variables (factors) are relevant to the 

problem?

❑ Can you simplify the problem to make it more 

manageable?

❑ What assumptions will you make?

One of many 

approaches. 

Some 

students may 

choose to 

work with the 

man’s velocity 

as the 

variable in 

question.



Can the man catch the bus?
Translating to Mathematics:

❑ What mathematical approach will you 

use to solve the problem and why?

❑ Where will your assumptions and 

variables be used in your model?

Possible student 
approach

d

In order for the man to catch the bus he must run the distance they are apart and also the 

distance the bus has travelled in that time.

𝒔 𝒂𝒏 = 𝒔𝒃𝒖𝒔 +𝒅𝑠𝑚𝑎𝑛 = 4 𝑡 𝑠𝑏𝑢𝑠 = 0.25𝑡
2



Can the man catch the bus?

Possible student 
approach

𝒔 𝒂𝒏 = 𝒔𝒃𝒖𝒔 +𝒅

Computing solution:

❑ How did you calculate your solution and what 

conclusions can you make from it?

❑ Explain the relationship between your solution 

and the original problem statement

1. Trial different gap distances:

@ d = 12 m (man is one full bus length behind)

4𝑡 =  0.25𝑡2 + 12

0 =  0.25𝑡2 - 4t + 12

t = 
4± ( 4 2 4(0.25 (12 

2(0.25 
 

t = 4 s and t = 12 s

           Man will catch the bus after 4 seconds of 

running 

@ d = 20 m (test slight increase in gap distance)

4𝑡 =  0.25𝑡2 + 20

0 =  0.25𝑡2 - 4t + 20

t = 
4± ( 4 2 4(0.25 (20 

2(0.25 
 

t = 
4±   4

2(0.25 
 No solution   Man won’t catch the bus

2. Find greatest gap:

               t = 
4± ( 4 2 4(0.25 (𝑑 

2(0.25 

 (−4 2 − 4(0.25 (𝑑) ≥ 0 

                                16 ≥ 𝑑 
 If the gap is 16 m or less, the man can catch 

the bus, running at a constant rate of 4 𝑚 𝑠 1. 
If the gap is 16 m the man will “just” catch the 
bus, based on assumptions.

3. Time it takes:

 t = 
4± ( 4 2 4(0.25 (16 

2(0.25 
  

t = 
4± 0

0.5
   t = 8s

4. Velocity of bus:

𝒗 =
1

2
8 = 𝟒   𝒔  

discriminant ≥ 0 

for solutions

𝒗 𝒂𝒏= 𝒗𝒃𝒖𝒔 
@ moment when 

man “just” catches 

bus

Formulating 

Problems

Evaluating 

Solutions

Translate to 

Mathematics

Computing 

Solutions

Mathematical 

Modelling



Can the man catch the bus?

Possible student 
approach

Evaluate the Solution:

❑ Does your answer make sense?

❑ How accurate/reliable is your solution 

based on your assumptions?

❑ Can you refine your assumptions to 

improve your solution?

𝑠𝑚𝑎𝑛 = 32 𝑚

𝑠𝑏𝑢𝑠 = 16 𝑚

Man “just” 
catches the 
bus @ t = 8 s

Validity of solution:

o This solution makes sense in the 

context of the assumptions made

Refining Solution:

o In reality, it is unlikely the man will run 

at a constant velocity – could account 

for varying velocity in next iteration

o The motion of jumping on the bus 

could be taken into account to make 

the model more realistic

o The time it takes seems very low – 

may need to increase the acceleration 

of the bus



Reflection

What did you notice about the learning and teaching 

approaches in this session?

What are some of the benefits for students of using 

approaches like this?



Session 3
Exploring Differential Equations through 

the lens of Mathematical Modelling



By The End of This Session You Will 
Have:

Engaged in approaches to building on students’ prior 

knowledge and making connections between strands 

An understanding of how Differential Equations can be 

developed and formalised through authentic modelling 

problems

Engaged in the four stages of the modelling cycle to 

develop students’ understanding of differential 

equations

Experienced a constructivist teaching approach to 

actively involve students in deriving the kinematics 

equations using calculus



Building on prior knowledge
The graphs below all describe the same stage of motion. 

How might your students 

approach finding the functions 

s(t), v(t) and a(t), in terms of t?

How could we develop that 

knowledge further, to introduce 

the use of calculus in kinematics?



Building on prior knowledge



Guided Discovery- Deriving the 
kinematics formulae using calculus

𝒂 =
𝒅𝒗

𝒅𝒕
׬ 𝑎 𝑑𝑡 = ׬  1 𝑑𝑣 

𝑎𝑡 + 𝑐 = 𝑣

How will we determine the unknown constant of integration?

We require information about the motion.

Using the condition for initial velocity: @ 𝑡 = 0, 𝑣 =  𝑢.

𝑎(0 + 𝑐 = 𝑢

            𝑐 = 𝑢

Substituting: 𝑎𝑡 + 𝑢 = 𝑣

 𝒗 = 𝒖 + 𝒂𝒕

“..derive the kinematics formulae of 

motion using calculus” 
Specification p. 18

 



Guided Discovery- Deriving the 
kinematics formulae using calculus

𝒗 =
𝒅𝒔

𝒅𝒕

𝑢 + 𝑎𝑡 =
𝑑𝑠

𝑑𝑡
𝑢 + 𝑎𝑡 𝑑𝑡 = 𝑑𝑠

න 𝑢 + 𝑎𝑡 𝑑𝑡 =න1 𝑑𝑠

𝑢𝑡 +
𝑎𝑡2

2
+ c = s

Again, we require information about the motion to determine the value of the 
constant of integration.

Using the condition for measuring displacement from a starting position: 

@ 𝑡 = 0, 𝑠 = 0.

𝑢(0 +
𝑎(0 2

2
+ c = 0

𝑐 = 0

 𝒔 = 𝒖𝒕 +
 

𝟐
𝒂𝒕𝟐

“..derive the kinematics formulae of 

motion using calculus” 
Specification p. 18

 

v =  𝑢 + 𝑎𝑡



Guided Discovery- Deriving the 
kinematics formulae using calculus

What about the equation 𝒗𝟐 = 𝒖𝟐 + 𝟐𝒂𝒔 ?

Firstly, we need a derivative for acceleration that relates velocity and 
displacement.

How might we do this using the derivatives of motion we know so far?

 𝒂 =
𝒅𝒗

𝒅𝒕
  and 𝒗 =

𝒅𝒔

𝒅𝒕
 

Starting off with acceleration:

𝑎 =
𝑑𝑣

𝑑𝑡

𝑎 .
𝒅𝒕

𝒅𝒔
=

𝑑𝑣

𝑑𝑡
.
𝒅𝒕

𝒅𝒔

𝑎 .
𝑑𝑡

𝑑𝑠
=

𝑑𝑣

𝑑𝑠

“..derive the kinematics formulae of 

motion using calculus” 
Specification p. 18

 

Links to Related 

Rates of Change- 

LCHL Maths
𝑑𝑠

𝑑𝑡
 = 𝑣

𝑎 =
𝑑𝑣

𝑑𝑠
.
𝑑𝑠

𝑑𝑡

𝑎 =
𝑑𝑣

𝑑𝑠 
. 𝑣

𝒂 = 𝒗
𝒅𝒗

𝒅𝒔



Guided Discovery- Deriving the 
kinematics formulae using calculus

Using our derived derivative: 

𝒂 = 𝒗
𝒅𝒗

𝒅𝒔

𝑎 𝑑𝑠 = 𝑣 𝑑𝑣

න𝑎 𝑑𝑠 =  න𝑣 𝑑𝑣

𝑎𝑠 + 𝑐 =
𝑣2

2

Again, we require information about the motion to 
determine the value of the constant of integration.

“..derive the kinematics formulae of 

motion using calculus” 
Specification p. 18

 

Using the condition for calculating velocity from 
a starting position: 

@ 𝑠 = 0, 𝑣 = 𝑢.

𝑎(0 + 𝑐 =
𝑢2

2

𝑎𝑠 +
𝑢2

2
=

𝑣2

2

2𝑎𝑠 + 𝑢2 = 𝑣2

𝒗𝟐 = 𝒖𝟐 + 𝟐𝒂𝒔



1 2

Approaches To Mathematical 
Modelling in The Classroom

Complete a 

full modelling 

cycle

Focus on a 

subset of 

competencies

Concepts through Modelling
Explore a rich modelling problem 

and, as the need arises, develop 

understanding of new mathematical 

concepts through instruction, guided 

discovery, research, etc.

Concepts then Modelling
Explore a number of mathematical 

concepts through suitable tasks, word 

problems etc., then solve a rich 

modelling problem. In exploring these 

tasks, modelling competencies may 

also be developed.

Complete a 

full modelling 

cycle

Focus on a 

subset of 

competencies



Modelling the velocity of a runner

Concepts through Modelling

2
“The focus on the experiential approach 

to teaching and learning, which is 

central to applied mathematics, means 

that students can be engaged in 

learning activities that complement their 

own needs and ways of learning.” 

Specification p. 14What variables/factors might 

your students consider?

How might they approach 

simplifying the problem?

How could this modelling 

problem build on prior 

knowledge of other Applied 

Mathematics topics?



Modelling the velocity of a runner

Concepts through Modelling

2
“draw free-body force diagrams for 

a particle on a smooth rigid fixed 

horizontal or inclined plane” 

Specification p. 19

Total force exerted in 

the direction of 

motion: approx. 𝟗𝟎 𝑵 

Combined internal 

and external variable 

resistance forces: 

approx.  𝟎𝒗 𝑵 

Normal Reaction 

Force

Weight Force: 𝟖𝟎𝒈 𝑵

a



Modelling the velocity of a runner

Concepts through Modelling

2

Forming an equation for 

acceleration:

𝑭𝒏𝒆𝒕= 𝒂

90 − 10𝑣 = 80𝑎

( .  𝟐𝟓 − 𝟎.  𝟐𝟓𝒗    𝒔 𝟐 = 𝒂

“solve dynamic problems 

involving resistive forces that are 

proportional to 𝑣𝑛 n ∈ R”

Specification p.19



Modelling the velocity of a runner

Concepts through Modelling

2
“derive and interpret in context 

differential equations for real-world 

phenomena involving continuous 

change” Specification p. 21

Deriving and solving the differential equation:

𝒂 =
𝒅𝒗

𝒅𝒕
𝑑𝑣

𝑑𝑡
= 1.125 − 0.125𝑣

1

1.125 − 0.125𝑣
𝑑𝑣 = 1 𝑑𝑡

׬
1

1.125  0.125𝑣
𝑑𝑣 = 1׬ 𝑑𝑡

@𝑡 =  0, 𝑣 =  0 (assumed condition)

න
0

𝑣 1

1.125 − 0.125𝑣
𝑑𝑣 =  න

0

𝑡

1 𝑑𝑡

Formulating 

Problems

Evaluating 

Solutions

Translate to 

Mathematics

Computing 

Solutions

Mathematical 

Modelling



Modelling the velocity of a runner

Concepts through Modelling

2
“derive and interpret in context 

differential equations for real-world 

phenomena involving continuous 

change” Specification p. 21

Formulating 

Problems

Evaluating 

Solutions

Translate to 

Mathematics

Computing 

Solutions

Mathematical 

Modelling

න
0

𝑣 1

1.125 − 0.125𝑣
𝑑𝑣 =  න

0

𝑡

1 𝑑𝑡

ln(1.125 − 0.125𝑣 

−0.125
= 𝑡

−8 ln(1.125 − 0.125𝑣 = 𝑡

−8 ln 1.125 − 0.125𝑣 + 8 ln 1.125 − 0.125(0  = 𝑡 − 0

− ln 1.125 − 0.125𝑣 + ln 1.125 =
𝑡

8

ln
1.125

1.125 − 0.125𝑣
= 0.125𝑡

𝑣

𝑡𝑣

0
0

0 0

𝑡



Modelling the velocity of a runner

Concepts through Modelling

2
“derive and interpret in context 

differential equations for real-world 

phenomena involving continuous 

change” Specification p. 21

Formulating 

Problems

Evaluating 

Solutions

Translate to 

Mathematics

Computing 

Solutions

Mathematical 

Modelling

1.125

1.125 − 0.125𝑣
 = 𝑒0.125𝑡 

1.125

𝑒0.125𝑡 = 1.125 − 0.125𝑣

0.125𝑣 = 1.125 − 1.125𝑒 0.125𝑡 

 𝒗 = 𝟗 − 𝟗𝒆 𝟎. 𝟐𝟓𝒕 

Using Desmos 

graphing 

calculator



Modelling the velocity of a runner

Concepts through Modelling

2
“derive and interpret in context 

differential equations for real-world 

phenomena involving continuous 

change” Specification p. 21

𝒗 = 𝟗 − 𝟗𝒆 𝟎. 𝟐𝟓𝒕   𝒔  

How might your students 

evaluate this result?

How could we utilise this 

problem to extend their 

learning?

What real life 

comparisons could they 

make?



Reflection

What did you notice about the learning and teaching 

approaches in this session?

What are some of the benefits for students of using 

approaches like this?
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