Understanding About Science

nvestigating in Science

Communicating in Science

Science in Society

Nature of Science

Earth and Space

Chemical World

Physical World

Biological World

1. Students should be able to appreciate how scientists work and how scientific ideas are modified over time

2.Students should be able to recognise evaluate and compare strategies for investigating hypotheses

- 3.Students should be able to design, plan and conduct investigations; explain how reliability, accuracy, precision, fairness, safety, ethics, and selection of suitable equipment have been considered
- 4. Students should be able to produce and select data (qualitatively/quantitatively), critically analyse data to identify patterns and relationships, identify anomalous observations, draw and justify conclusions
- 5.Students should be able to review and reflect on the skills and thinking used in carrying out investigations, and apply their learning and skills to solving problems in
- including secondary data, understanding
- communicate their research and investigative findings in a variety of ways fit
- 8. Students should be able to evaluate

Blocks Building

- 1. Students should be able to describe the relationships between various celestial objects including moons, asteroids, comets, planets, stars, solar systems, galaxies and
- 2. Students should be able to explore a scientific model to illustrate the origin of the
- 3. Students should be able to interpret data to compare the Earth with other planets and moons in the solar system, with respect to properties including mass, gravity, size, and

- 1. Students should be able to investigate whether mass is unchanged when chemical and physical changes take place
- 2. Students should be able to develop and use models to describe the atomic nature of matter; demonstrate how they provide a simple way to account for the conservation of mass, changes of state, physical change, chemical change, mixtures, and their separation
- 3. Students should be able to describe and model the structure of the atom in terms of electrons; comparing mass and charge of protons, neutrons and electrons
- 4. Students should be able to classify substances as elements, compounds, mixtures, metals, non-metals, solids, liquids, gases and solutions

- 1. Students should be able to select and use appropriate measuring instruments
- measure/calculate length, mass, time, temperature, area, volume, density, speed, acceleration, force, potential difference, current, resistance, electrical power
- 1. Students should be able to investigate the structures of animal and plant cells and relate them to their functions
- 2. Students should be able to describe asexual and sexual reproduction; explore genetically controlled characteristics
- 3. Students should be able to outline evolution by natural selection and how it explains the diversity of living things

Systems and Interactions

- 4. Students should be able to develop and to describe predictable phenomena lunar phases, and eclipses of the sun and
- 5. Students should be able to describe the cycling of matter, including that of carbon

- 3. Students should be able to investigate
- 4. Students should be able to research and discuss a technological application of physics
- 5. Students should be able to design and build simple electronic circuits

- 4. Students should be able to describe the and respiratory systems
- 5. Students should be able to conduct a habitat study; research and investigate the interdependence of organisms within

- different energy sources; formulate and current and future energy needs on Earth
- 9. Students should be able to consider chemical reactions in terms of energy, using the terms exothermic, endothermic and profile diagrams to illustrate energy changes
- 6. Students should be able to explain energy of energy changes and dissipation
- 7. Students should be able to design, build, changes and ways of improving efficiency
- 8. Students should be able to explain how

- the role of science in society; and its personal, social and global importance; and how society influences scientific research
- Sustainability
- 7. Students should be able to illustrate how earth processes and human factors influence the Earth's climate, evaluate effects of climate change and initiatives that attempt to address those effects
- 8. Students should be able to examine some of the current hazards and benefits of space exploration and discuss the future role and implications of space exploration in society
- 10. Students should be able to evaluate how humans contribute to sustainability through the extraction, use, disposal, and recycling of materials
- 8. Students should be able to research and discuss the ethical and sustainability issues that arise from our generation and consumption of electricity
- 9. Students should be able to explain human sexual reproduction; discuss medical, ethical, and societal issues
- 10. Students should be able to evaluate how humans can successfully conserve ecological biodiversity and contribute to global food production; appreciate the benefits that people obtain from ecosystems