
National Workshop 2
Day 1

Leaving Certificate Computer Science

Workshop Overview

Session 1

10:00 - 11:30

Introduction

Computer Systems I

Tea/Coffee

11:30 – 12:00

Session 2

12:00 - 13:30
Computational Thinking II

Lunch

13:30 - 14:30

Session 3

14:30 - 16:30
PRIMM and Curriculum Planning

Sept ’23 June ’24

Skills Workshop

micro:bit (Elective)

Oct

’23
Nov

‘23

Jan

’24

CoP

National Workshop 2

Clusters (CoP)
Skills Workshop

Python II

CoP

Winter

Webinar
National Workshop 3

CoP

Feb

‘24

Clusters (CoP)

Spring

Webinar

Apr

’24

National Workshop 4

WebSkills Workshop

HTML/CSS/JavaScript

CoP CoP CoP

Dates for your Diary for 2023/4

Next CPD event: Community of Practice cluster meetings – online early November

ALT4 + Pedagogic Content Knowledge (PCK) (ALT2 + PCK) (ALT3 + PCK)

Introducing Oide

Supports Provided by Oide

National

Workshops
School Support ScoilnetWebinars

Skills

Workshops
Oide website CompSciCollaboratives

Text

Purpose for the Day

 To allow Phase 5 LCCS teachers to engage with the core

 concepts of Computer Systems and Computational Thinking.

 To experience ALT4 (Embedded Systems) through the eyes

 of the student by engaging with the Design Process.

Key Messages

All learning outcomes (LOs)

are interwoven. This means

that the specification can be

used in many different ways.

ALTs provide an opportunity

to teach theoretical aspects

of LCCS.

LCCS can be mediated through

a constructivist pedagogical

approach.

Group work is a key feature

in the teaching, learning and

assessment of LCCS.

LCCS NW2
Session 1
Number Systems

By the end of this session..

Participants will be enabled to…

• develop an understanding of Computational Thinking concepts such as abstraction,

decomposition, algorithmic thinking and pattern recognition

• develop a shared understanding of how programming as a process can be used to mediate CT

in the classroom

• convert decimal numbers to binary numbers and vice versa

Computational Thinking

“… the thought processes involved in

formulating problems and their solutions

so that the solutions are represented in a

form that can be effectively carried out

by an information-processing agent.”

(Wing 2011)

Decomposition of a decimal number

70,000 + 0,000 + 200 + 80 + 4 = 70,284

01234

Least Significant DigitMost Significant Digit

Units

Hundreds

Tens

Hundreds

Thousands

7 0 2 8 4

Ten

Thousands

4 X 100

8 X 101

2 X 102

0 X 103

7 X 104

= 4

= 80

= 200

= 0

= 70000

etc.

What about

a binary

number?

powers of 10

P4

Decomposition of a binary number

16 + 0 + 0 + 2 + 1 = 19

01234

Least Significant Bit (LSB)
Most Significant Bit (MSB)

Units

Hundreds

Twos

Fours

Eights

1 0 0 1 1

Sixteens

1 X 20

1 X 21

0 X 22

0 X 23

1 X 24

= 1

= 2

= 0

= 0

= 16

etc.

Can we do

this in

Python?

100112 = 1910

powers of 2

P4

So, 1910 = 100112

2

2

2

19

9

4

2

1

+ 1

+ 1

+ 0

+ 0

Divide by 2 …. note the

remainder
1

3 Keep dividing …

= 9 + 1

= 4 + 1

= 2 + 0

= 1 + 0

= 0 + 1

2 The quotient becomes

the new dividend

4 Stop when the quotient

reaches zero

5 Read the answer from

the bottom up

2

2

2 0 + 1

Remainder
Divisor

Dividend
Quotient +=Convert 𝟏𝟗𝟏𝟎 to base 2

Decimal -> Binary (another example)

47

23 + 1

11 + 1

5 + 1

2 + 1

1 + 0

0 + 1

2

2

2

2

2

2

2

4710 = 1011112

Divide by 2 …. note the

remainder

Keep dividing …

The quotient becomes

the new dividend

Stop when the quotient

reaches zero

Read the answer from

the bottom up

1

3

2

4

5
P5

https://learningcontent.cisco.com/games/binary/index.html

https://learningcontent.cisco.com/games/binary/index.html

Code Along Activity

Use Modify Create

1. quotient = 19//2

2. remainder1 = 19%2

3. print(quotient, remainder1)

4.

5. # copy+paste ...

6. quotient = 9//2

7. remainder2 = 9%2

8. print(quotient, remainder2)

9. # Once ...

10. quotient = 4//2

11. remainder3 = 4%2

12. print(quotient, remainder3)

13. # Twice ...

14. quotient = 2//2

15. remainder4 = 2%2

16.

17. # Three times ...

18. quotient = 1//2

19. remainder5 = 1%2

Program Tracing / Debugging

1. quotient = 19//2

2. remainder1 = 19%2

3. print(quotient, remainder1)

4.

5. # copy+paste ...

6. quotient = 9//2

7. remainder2 = 9%2

8. print(quotient, remainder2)

9. # Once ...

10. quotient = 4//2

11. remainder3 = 4%2

12. print(quotient, remainder3)

13. # Twice ...

14. quotient = 2//2

15. remainder4 = 2%2

16.

17. # Three times ...

18. quotient = 1//2

19. remainder5 = 1%2

1. quotient = 19//2

2. remainder1 = 19%2

3. print(quotient, remainder1)

4.

5. # copy+paste ...

6. quotient = 9//2

7. remainder2 = 9%2

8. print(quotient, remainder2)

9. # Once ...

10. quotient = 4//2

11. remainder3 = 4%2

12. print(quotient, remainder3)

13. # Twice ...

14. quotient = 2//2

15. remainder4 = 2%2

16.

17. # Three times ...

18. quotient = 1//2

19. remainder5 = 1%2

Program Tracing / Debugging
The Notional Machine / Working Memory

This is what is displayed ….

Program Tracing / Debugging

1. quotient = 19//2

2. remainder1 = 19%2

3. print(quotient, remainder1)

4.

5. # copy+paste ...

6. quotient = 9//2

7. remainder2 = 9%2

8. print(quotient, remainder2)

9. # Once ...

10. quotient = 4//2

11. remainder3 = 4%2

12. print(quotient, remainder3)

13. # Twice ...

14. quotient = 2//2

15. remainder4 = 2%2

16.

17. # Three times ...

18. quotient = 1//2

19. remainder5 = 1%2

quotient: 9

This is what is displayed ….

The Notional Machine / Working Memory

Program Tracing / Debugging

1. quotient = 19//2

2. remainder1 = 19%2

3. print(quotient, remainder1)

4.

5. # copy+paste ...

6. quotient = 9//2

7. remainder2 = 9%2

8. print(quotient, remainder2)

9. # Once ...

10. quotient = 4//2

11. remainder3 = 4%2

12. print(quotient, remainder3)

13. # Twice ...

14. quotient = 2//2

15. remainder4 = 2%2

16.

17. # Three times ...

18. quotient = 1//2

19. remainder5 = 1%2

quotient: 9

remainder1: 1

This is what is displayed ….

The Notional Machine / Working Memory

Program Tracing / Debugging

1. quotient = 19//2

2. remainder1 = 19%2

3. print(quotient, remainder1)

4.

5. # copy+paste ...

6. quotient = 9//2

7. remainder2 = 9%2

8. print(quotient, remainder2)

9. # Once ...

10. quotient = 4//2

11. remainder3 = 4%2

12. print(quotient, remainder3)

13. # Twice ...

14. quotient = 2//2

15. remainder4 = 2%2

16.

17. # Three times ...

18. quotient = 1//2

19. remainder5 = 1%2

quotient: 9

remainder1: 1

This is what is displayed ….

>>> 9 1

The Notional Machine / Working Memory

Program Tracing / Debugging

1. quotient = 19//2

2. remainder1 = 19%2

3. print(quotient, remainder1)

4.

5. # copy+paste ...

6. quotient = 9//2

7. remainder2 = 9%2

8. print(quotient, remainder2)

9. # Once ...

10. quotient = 4//2

11. remainder3 = 4%2

12. print(quotient, remainder3)

13. # Twice ...

14. quotient = 2//2

15. remainder4 = 2%2

16.

17. # Three times ...

18. quotient = 1//2

19. remainder5 = 1%2

quotient: 9 4

remainder1: 1

This is what is displayed ….

>>> 9 1

The Notional Machine / Working Memory

Program Tracing / Debugging

1. quotient = 19//2

2. remainder1 = 19%2

3. print(quotient, remainder1)

4.

5. # copy+paste ...

6. quotient = 9//2

7. remainder2 = 9%2

8. print(quotient, remainder2)

9. # Once ...

10. quotient = 4//2

11. remainder3 = 4%2

12. print(quotient, remainder3)

13. # Twice ...

14. quotient = 2//2

15. remainder4 = 2%2

16.

17. # Three times ...

18. quotient = 1//2

19. remainder5 = 1%2

quotient: 9 4

remainder1: 1

This is what is displayed ….

>>> 9 1

remainder2: 1

The Notional Machine / Working Memory

Program Tracing / Debugging

1. quotient = 19//2

2. remainder1 = 19%2

3. print(quotient, remainder1)

4.

5. # copy+paste ...

6. quotient = 9//2

7. remainder2 = 9%2

8. print(quotient, remainder2)

9. # Once ...

10. quotient = 4//2

11. remainder3 = 4%2

12. print(quotient, remainder3)

13. # Twice ...

14. quotient = 2//2

15. remainder4 = 2%2

16.

17. # Three times ...

18. quotient = 1//2

19. remainder5 = 1%2

quotient:

remainder1: 1

This is what is displayed ….

>>> 9 1

remainder2: 1

>>> 4 1

9 4

The Notional Machine / Working Memory

Program Tracing / Debugging

1. quotient = 19//2

2. remainder1 = 19%2

3. print(quotient, remainder1)

4.

5. # copy+paste ...

6. quotient = 9//2

7. remainder2 = 9%2

8. print(quotient, remainder2)

9. # Once ...

10. quotient = 4//2

11. remainder3 = 4%2

12. print(quotient, remainder3)

13. # Twice ...

14. quotient = 2//2

15. remainder4 = 2%2

16.

17. # Three times ...

18. quotient = 1//2

19. remainder5 = 1%2

quotient: 9 4 2

remainder1: 1

This is what is displayed ….

>>> 9 1

remainder2: 1

>>> 4 1

The Notional Machine / Working Memory

Program Tracing / Debugging

1. quotient = 19//2

2. remainder1 = 19%2

3. print(quotient, remainder1)

4.

5. # copy+paste ...

6. quotient = 9//2

7. remainder2 = 9%2

8. print(quotient, remainder2)

9. # Once ...

10. quotient = 4//2

11. remainder3 = 4%2

12. print(quotient, remainder3)

13. # Twice ...

14. quotient = 2//2

15. remainder4 = 2%2

16.

17. # Three times ...

18. quotient = 1//2

19. remainder5 = 1%2

quotient: 9 4 2

remainder1: 1

This is what is displayed ….

>>> 9 1

remainder2: 1

>>> 4 1

remainder3: 0

The Notional Machine / Working Memory

Program Tracing / Debugging

1. quotient = 19//2

2. remainder1 = 19%2

3. print(quotient, remainder1)

4.

5. # copy+paste ...

6. quotient = 9//2

7. remainder2 = 9%2

8. print(quotient, remainder2)

9. # Once ...

10. quotient = 4//2

11. remainder3 = 4%2

12. print(quotient, remainder3)

13. # Twice ...

14. quotient = 2//2

15. remainder4 = 2%2

16.

17. # Three times ...

18. quotient = 1//2

19. remainder5 = 1%2

quotient: 9 4 2

remainder1: 1

This is what is displayed ….

>>> 9 1

remainder2: 1

>>> 4 1

remainder3: 0

>>> 2 0

The Notional Machine / Working Memory

Group Activity: Breakout

How could we develop this Python code to a general solution?

Binary -> Decimal (1 of 2)

binary_number = 10011

decimal_number = 0

digit0 = 10011 % 10 # lsb

stem = 10011 // 10

print(stem, digit0)

Binary -> Decimal

... convert binary 10011 to decimal ...

... the initial number is a string

binary_number = "10011"

index: 01234

units = int(binary_number[4])*1

twos = int(binary_number[3])*2

fours = int(binary_number[2])*4

eights = int(binary_number[1])*8

sixteens = int(binary_number[0])*16

decimal = units+twos+fours+eights+sixteens

How could we develop this Python code to a general solution?

20 minute breakout

Break

LCCS NW2
Session 2
Computational Thinking II

By the end of this session …

Participants will have been enabled to…

• develop their understanding of Computational Thinking (CT) concepts

• consider the questions: What is CT? Why is CT important?

• reflect on successful pedagogies for teaching CT skills

• analyse and develop solutions to problems of various types using CT skills such as abstraction,

decomposition, pattern recognition and algorithmic thinking

https://www.curriculumonline.ie

LCCS Curriculum Specification

What does the specification say?

“Computer science is the study of computers and algorithmic processes. Leaving Certificate

Computer Science includes how programming and computational thinking can be applied to the

solution of problems, and how computing technology impacts the world around us.”

[LCCS Spec. Page 2, paragraph 1]

"The role of programming in computer science is like that of practical work in the other subjects — it

provides motivation, and a context within which ideas are brought to life. Students learn

programming by solving problems through computational thinking processes and through practical

applications such as applied learning tasks." LCCS specification (2017)

What does the specification say?

What is Computational Thinking?

"Computational Thinking is the thought processes
involved in formulating problems and their solutions
so that the solutions are represented in a form that
can be effectively carried out by an information-
processing agent." Jeannette M. Wing

Carnegie Mellon University (2011)

Computational Thinking Concepts

Source: https://csunplugged.org/en/computational-thinking/

Simple Daily Examples

Looking up a name in an alphabetically sorted list

Linear: start at the top

Binary search: start in the middle

Standing in a queue at a bank, supermarket, check in desk, passport control

Performance analysis of task scheduling

Taking your children to football, music and the swimming pool

Traveling salesman (with more constraints)

Cooking a gourmet meal

Multi-tasking, Parallel processing:

Cleaning out your garage

Keeping only what you need vs. throwing out stuff when you run out of space.

Storing away your child’s toys scattered on the floor

Using hashing (e.g., by shape, by color)

Why is Computational Thinking Important?

❑ It moves students beyond being technologically literate

❑ It creates problem solvers instead of software technicians

❑ It emphasises the creation of knowledge rather than the use of information

❑ It presents endless possibilities for creative problem solving

❑ It enhances the problem-solving techniques you already teach

(Source: Pat Phillips, NECC 2007, Atlanta)

“What are effective ways for teaching
computational thinking?”

How to Teach Computational Thinking

❑ Increase your own CT knowledge

❑ Integrate CT concepts into everyday instruction

❑ Use CT terms for everyday tasks

e.g. “Let’s create an algorithm for …”

❑ Encourage students to formulate and test their own hypotheses

e.g. “Crime rates are on the rise …”

❑ Provide opportunities for students to transfer their learning to other situations

Successful CT Pedagogies

❑ Analogy / Storytelling

❑ CS Unplugged

 - Kinaesthetic

 - Role Playing

 - Puzzles

 - Art

 - Games

 - Magic

❑ Enquiry Based Learning (TEMI)

Programming Practice (Python / JavaScript)

Applying
Computational
Thinking Skills
Examples

Cut Hive Logic Puzzles

Cut Hive Logic Puzzles

Single Hexagon Corners

Challenge

Solution

Algorithmic Thinking

Pieces can move either by sliding into an adjacent empty square, or by jumping a single
adjacent piece into the empty square immediately beyond.

The aim is swap the positions of the black and white pieces.

Group Activity
Scenarios

Group Activity

Scenario 1 (Storytelling)

‘The Diving Bell and the Butterfly’ is an

incredibly uplifting book. It’s the

autobiography of Jean-Dominique Bauby,

written after he woke up in a hospital bed

totally paralysed. In the book, he describes

life with locked-in syndrome. He did have a

way to communicate not only to write the

book but also with medics, friends and

family. He did it without any technology at

all. How?

https://www.youtube.com/watch?v=t4Ek4ZBpshs

Scenario 2 (Kinaesthetic)

Which cards do we need to turn over to make the number 13?

(The cards are blank on the reverse side.)

Scenario 3 (Role play)

answer = input ("Are you happy?")

if answer == "Y":

 print ("Smile!")

else:

 print ("Frown!")

print ("Thank you!") answer == “Y”?

print

“Smile!”

print

“Thank you”

print

“Frown!”

True

False

answer = input

 “Are you happy?”

Instructions

In your assigned group go to the breakout area

Read the scenario provided

Design a presentation based on the scenario …

 - a description of the scenario provided

 - a demonstration of the activity

 - an outline of how the pedagogy could be used to teach CT concepts

 - suggestions on how the scenario could be used (or extended) to design

lesson(s) suitable for LCCS

Next Step: Present back to the wider group.

Presentation

What pedagogy
are you using?

What CT
concepts are
you explaining?

LCCS NW2
Session 3
PRIMM
Curriculum planning

By the end of this session…
Participants will be enabled to…

• deepen their understanding of the Investigate, Modify and Make stage of the PRIMM pedagogy

by working together through a group activity

• engage collaboratively to develop a curriculum plan for the coming weeks/months guided by the

LCCS specification

Successful Strategies and Pedagogies

Computational Discourse

Topic Ordering

Problem Based Learning

PRIMM
(Use-Modify-Create)

Program Tracing / Debugging

Test Driven Development

Pair Programming

Parson’s Problems

Game-based Pedagogy

Physical Computing

Peer Instruction

Unplugged Activities

Block Programming

Modelling Scaffolding Progression Context Constructivism

Inquiry Based Learning

Active Learning

Fill in the blanks

Find the ‘bug’

Fix the syntax

Code Commenting

Metacognition

Turtle Graphics Semantic Waves

ReflectionNotational Machine

Critical Reflection

Example: Fix the syntax

Run the program to see what happens

Can you fix the syntax error?

PRINT("Hello World")

Now continue with the remaining 4 print statements ...

You will need to uncomment each line and run the program to reveal each

syntax error

#print(Hello World)

#print('Hello World")

#print "Hello World"

#print("Hello", World)

Example: Find the bug (semantic error)

Find and fix the 'bug' in the program below

The intention is to add a and b and display the answer

a = 3

b = 4

sum = a + 3

print(a, "+", b, "=", sum)

Example: Insert comments

Insert comments to explain each line of code below

(the first one has been done to get you started)

x = 23 # Assign the value 23 to the variable x

y = 17

print("The value of x is", x)

print("The value of y is", y)

x = x + y

print("The value of x is", x)

x = y

print("The value of x is", x)

Example: Fill in the blanks

https://github.com/pdst-lccs/lccs-python/blob/master/Section%205%20-%20Programming%20Logic/Guess%20game%20v3%20-%20multiple%20if.py

Example 1: Parson’s Problem

elif guess < number:

 print("Hard luck!")

 print("Too low")

else:

 print("Hard luck!")

 print("Too high")

if guess == number:

 print("Correct")

 print("Well done!")

guess = int(input("Enter a number between 1 and 10: "))

import random

number = random.randint(1, 10)
print("Goodbye")

Arrange the blocks of code below into the correct order

The final program should generates a random number, prompts the user to enter a guess and display

a message telling the user if the guess was correct, too low or too high.

The program should always display the string Goodbye at the end.

Example 1: Parson’s Problem

elif guess < number:

 print("Hard luck!")

 print("Too low")

else:

 print("Hard luck!")

 print("Too high")

if guess == number:

 print("Correct")

 print("Well done!")

guess = int(input("Enter a number between 1 and 10: "))

import random

number = random.randint(1, 10)
print("Goodbye")

Arrange the blocks of code below into the correct order

The final program should generate a random number, prompts the user to enter a guess and display a

message telling the user if the guess was correct, too low or too high.

The program should always display the string Goodbye at the end.

❷

❸

❹

❺

❶ ❻

Example 2: Parson’s Problem
Rearrange the jumbled up lines shown below so that the program prompts the end-user to enter two

integers and then computes and displays their sum.

Warning! There are three extra lines that you won’t need.

Example 2: Parson’s Problem
Rearrange the jumbled up lines shown below so that the program prompts the end-user to enter two

integers and then computes and displays their sum.

Warning! There are three extra lines that you won’t need.

❶

❷

❸

❹

❺

Peer Instruction
Well-evidenced pedagogical strategy

Combination of:

- Flipped learning

- Collaborative working

- Well-chosen MCQs

x = 0

y = (x == 21%7)

print(y)

Most effective where there are close distractors and

known misconceptions

For more information on peer instruction see http://peerinstruction4cs.org

A. 0
B. 3
C. False
D. True

E. None of
the above

PRIMM

PRIMM

A way of structuring programming lessons that focuses on:

- Reading before Writing

- Student Collaboration

- Reducing Cognitive Load

- Well-chosen starter programs

- Ownership Transfer

Sources:

1. https://blogs.kcl.ac.uk/cser/2017/02/20/exploring-pedagogies-for-teaching-programming-in-school/ (Sue Sentence)

2. https://blogs.kcl.ac.uk/cser/2017/09/01/primm-a-structured-approach-to-teaching-programming/ (Sue Sentence)

3. Sue Sentance, Jane Waite & Maria Kallia (2019) Teaching computer programming with PRIMM: a sociocultural perspective, Computer

Science Education, 29:2-3, 136-176, DOI: 10.1080/08993408.2019.1608781

https://blogs.kcl.ac.uk/cser/2017/02/20/exploring-pedagogies-for-teaching-programming-in-school/
https://blogs.kcl.ac.uk/cser/2017/09/01/primm-a-structured-approach-to-teaching-programming/

PRIMM

Predict: given a working program, what do you think it will do? (at a high level of abstraction)

Run: run it and test your prediction

Investigate: What does each line of code mean? (get into the nitty gritty - low level of abstraction -

trace/annotate/explain/talk about parts)

Modify: edit the program to make it do different things (high and low levels of abstraction)

Make: design a new program that uses the same nitty gritty but that solves a new problem

PRIMM – Example (1 of 2)
1. import random

2.

3. number = random.randint(1, 10)

4. #print(number)

5.

6. guess = int(input("Enter a number between 1 and 10:"))

7.

8. if guess == number:

9. print("Your guess was correct")

10. print("Goodbye")

11.else:

12. print("Incorrect guess")

13. print("Goodbye")

Predict: Discuss in pairs.

What do you think the

above program will do?

Be precise. Be succinct.

Breakout Activity:

Investigate: Devise some questions to elicit student learning and curiosity. What if … Try … Explain …

Run: Download the

program / Key it in. Execute

the program. Test your

prediction.

Were you correct?

Modify: Suggest some simple extensions / modifications for students to make in pairs. Same program.

Make: Formulate new problems that are conceptually similar. New context. New program (copy+paste)

P7

PRIMM – Example (2 of 2)
Investigate:

1. Uncomment line 4. What happens?

2. What is the purpose of line 4?
3. What would happen if you removed int from line 6?

4. Try changing == to != on line 8. What happens?

5. What if == was changed to = ?

6. What would happen if you don’t enter an integer?

7. Try removing a bracket (anywhere). What happens?

8. Annotate each line of the program.

Modify:

1. Change the program so that it generates a number between 1 and 100? Can you be sure?
2. Change the program so that there is only one print("Goodbye")statement (without altering the logic)

3. Extend the program so that it tells the user if the number entered was too high or too low

4. Design an algorithm based on the program that would give the user 3 guesses

5. Get the computer to generate 4 numbers (lotto) OR ask the user how many numbers to generate?

Make:

Write a program that generates two numbers and prompts the user to enter their product

1. import random

2.

3. number = random.randint(1, 10)

4. #print(number)

5.

6. guess = int(input("Enter a number between 1 and 10:

"))

7.

8. if guess == number:

9. print("Your guess was correct")

10. print("Goodbye")

11.else:

12. print("Incorrect guess")

13. print("Goodbye")

Group activity

Instructions:

In your groups, fill in the Investigate, Modify and Make
sections in your workbook for the code snippet
assigned to you.

You may use the examples from the previous pages to
help you.

P8-15

1. from turtle import *

2.

3. color(“red”)

4. pensize(5)

5. forward(100)

6. left(90)

7. forward(100)

8. left(90)

9. forward(100)

10.left(90)

11.forward(100)

Task 1

1. centigrade = float(input("Enter the Centigrade value: "))

2. fahrenheit = 9/5 * centigrade + 32

3. print(centigrade, "degrees C equals", fahrenheit, "degrees F")

Task 2

1. runningTotal = 0

2.

3. price1 = 10

4. runningTotal = runningTotal + price1

5. price2 = 14

6. runningTotal = runningTotal + price2

7. price3 = 6

8. runningTotal = runningTotal + price3

9.

10. print("Total amount is", runningTotal)

Task 3

1. print("Average height calculator")

2. print("=========================")

3.

4. h1 = int(input("Enter first height (cm): "))

5. h2 = int(input("Enter second height (cm): "))

6. h3 = int(input("Enter third height (cm): "))

7. h4 = int(input("Enter fourth height (cm): "))

8. h5 = int(input("Enter fifth height (cm): "))

9.

10. avgHeigth = (h1+h2+h3+h4+h5)/5

11.

12. print("The average height is ", avgHeigth, "cm")

Task 4

Curriculum
planning

“Learning outcomes can best

be defined as statements of

what a learner knows,

understands and is able to do

after completion of learning.”
CEDEFOP (2009)

What order might you teach them in?

How might you work with the learning outcomes?

How might students demonstrate they have

achieved the learning outcomes?

What about repeating LOs / linking to

other parts of the course?

What content or resources might you need?

Group activity

Use the LCCS specification, consider the following question:
How do you intend to approach LCCS in your classroom
(over the next 4 weeks/until mid-term/until Christmas)?

In your groups, consider:

Timeframe / Topics / LOs / Resources / Assessment /

Build up to ALTs / ALTs / Equipment etc.

Nominate:

A notetaker to summarise your group’s work

A spokesperson to provide feedback

National Workshop 2
Day 2

Leaving Certificate Computer Science

Day 2 - Workshop Overview

Session 4

09:00 - 11:00

Introduction to ALT4

Tea/Coffee

11:00 - 11:15

Session 5

11:30 - 13:00

ALT4: Investigate + Plan

Lunch

13:00 - 14:00

Session 6

14:00 - 15:30

ALT4: Design + Create

Key Messages

There are many

ways to use the

LCCS specification

The Applied Learning Tasks

(ALTs) provide an opportunity

to teach theoretical aspects

of LCCS

The learning outcomes

(LOs) are non-linear

LCCS can be mediated

through a constructivist

pedagogical approach

92

LCCS NW2
Session 4
Introduction to ALT4

By the end of this session…
Participants will …

• be introduced to ALTs

• be introduced to ALT4

• develop an understanding of Embedded systems

• be introduced to Micro:bit – Demonstration

• participate in Micro:bit group activities

• develop an understanding of Design Methodologies

Introduction to
ALTs

Applied Learning Tasks (ALTs)

Students work in teams to carry out four applied learning tasks
over the duration of the course each of which results in the creation of
a real or virtual
computational artefact and a report.

These artefacts should relate to the students’ lives and interests.

Where possible, the artefacts should be beneficial to the
community and society in general.

Examples of computational artefacts include programs, games,
web pages, simulations, visualisations, digital animations,
robotic systems, and apps.

LCCS Specification

page 15

LCCS Interwoven

The four applied learning tasks explore the four following contexts:

1 - Interactive information systems

2 - Analytics

3 - Modelling and simulation

4 - Embedded systems

Key point to remember: Explore and teach the LOs through the lens of ALTs.

Introduction to
ALT4

Considering the ALTs…

ALT4 - Embedded systems

The design and application of computer hardware and
software are a central part of computer science.

Students will implement a microprocessor system that uses
sensors and controls digital inputs and outputs as part of an
embedded system.

By building the component parts of a computer system,
students will deepen their understanding of how computers
work and how they can be embedded in our everyday
environments.

LCCS Specification

page 23

ALT4 - Learning outcomes

Embedded
Systems

Activity: Think-Pair-Share

Consider and discuss:

1. What are the uses of Embedded Systems?

2. What is the difference between digital and analogue data?

Participants spend time in
silence writing or thinking
about their own ideas

Participants turn to the
person beside them to
discuss their ideas

Pairs share their
answers with other pairs
(square) or the wider
group

P34

Embedded Systems

General Purpose PC Embedded System

P35

https://www.sharetechnote.com/html/EmbeddedSystem_WhatIsIt.html

https://www.sharetechnote.com/html/EmbeddedSystem_WhatIsIt.html

Embedded Systems

Embedded systems are a combination of hardware and software designed to
perform a specific function. They are called ‘embedded’ because they are often
used as part of a larger system. Many embedded systems use sensors to
receive analogue or digital inputs. The input data which is often supplied in real
time is then processed resulting in some sort of output. While not every
embedded system will have a user interface, some are designed to meet the
principles of universal design. Q15, LCCS HL 2021

Characteristics of an Embedded System:
• Task-specific.
• Typically, consists of hardware, software, and firmware;
• Microprocessor-based or microcontroller-based
• Often used for sensing and real-time computing in Internet of

Things (IoT) devices

P35

Matching Exercise

P36

Microprocessors/ Microcontrollers

P37

Introduction to
Micro:bit

Links between Micro:bit and Core Concepts

“The core concepts are developed theoretically and applied practically. In this way,
conceptual classroom-based learning is intertwined with experimental computer lab-based
learning throughout the two years of the course.” PAGE 20 Spec

LCCS Learning Outcomes

2.11 describe the different components within a computer and the function of those
components

2.12 describe the different types of logic gates and explain how they can be arranged into
larger units to perform more complex tasks

2.13 describe the rationale for using the binary number system in digital computing and how
to convert between binary, hexadecimal and decimal

2.14 describe the difference between digital and analogue input

2.15 explain what is meant by the World Wide Web (WWW) and the Internet, including the
client server model, hardware components and communication protocols

Getting started

Reaction Game - Demonstration

https://drive.google.com/file/d/1iZ6I3rRvqeUAliAYfWn9mycN--uIONJy/view?usp=sharing

Resources for Micro:bit

https://drive.google.com/file/d/1iZ6I3rRvqeUAliAYfWn9mycN--uIONJy/view?usp=sharing

https://makecode.microbit.org/courses/csintro

Lessons

1.Making

2.Algorithms

3.Variables

4.Conditionals

5.Iteration

6.Review/Mini-Project

7.Coordinate grid system

8.Booleans

9.Bits, bytes, and binary

10.Radio

11.Arrays

12.Independent final project

Resources for Micro:bit

https://makecode.microbit.org/courses/csintro
https://makecode.microbit.org/courses/csintro/making
https://makecode.microbit.org/courses/csintro/algorithms
https://makecode.microbit.org/courses/csintro/variables
https://makecode.microbit.org/courses/csintro/conditionals
https://makecode.microbit.org/courses/csintro/iteration
https://makecode.microbit.org/courses/csintro/miniproject
https://makecode.microbit.org/courses/csintro/coordinates
https://makecode.microbit.org/courses/csintro/booleans
https://makecode.microbit.org/courses/csintro/binary
https://makecode.microbit.org/courses/csintro/radio
https://makecode.microbit.org/courses/csintro/arrays
https://makecode.microbit.org/courses/csintro/finalproject

Resources for Micro:bit

https://www.youtube.com/playlist?list=PL

_0n6wprxG5IaRaYwKJJxxLSPsl33OySr
https://classroom.microbit.org/

https://www.youtube.com/playlist?list=PL_0n6wprxG5IaRaYwKJJxxLSPsl33OySr
https://www.youtube.com/playlist?list=PL_0n6wprxG5IaRaYwKJJxxLSPsl33OySr
https://classroom.microbit.org/

Micro:bit kits

Design
methodologies

Agile vs Waterfall

Waterfall

https://www.theserverside.com/tip/Agile-vs-Waterfall-Whats-the-differenceP48

https://www.theserverside.com/tip/Agile-vs-Waterfall-Whats-the-difference

Agile

https://hygger.io/guides/agile/
P48

https://hygger.io/guides/agile/

The Design Process

P49

LCCS NW2
Session 5
ALT4:

Investigate and Plan

By the end of this session…
Participants will be enabled to…

• work in groups to share and evaluate potential ideas for ALT 4

(embedded systems)

• collaborate on developing one potential idea for ALT 4 further

• give and receive feedback on potential ALT 4 ideas

• enhance their understanding of the Investigate and Plan stages of the

Design Process with a particular focus on ALT 4

The Design Process

This is a main body slide (20)

Investigate

The Design Process: Investigate

ALT4 - Embedded systems

The design and application of computer hardware and
software are a central part of computer science.

In this Applied Learning Task, students will implement a
microprocessor system that uses sensors and controls digital
inputs and outputs as part of an embedded system.

By building the component parts of a computer system,
students will deepen their understanding of how computers
work and how they can be embedded in our everyday
environments.

LCCS Specification

page 23

ALT4 - Learning outcomes

ALT4 example: Inuit children

System for Inuit children

LED built into hoods to flash when light is low

Built-in heating system with sensors in positions

ALT4: Investigate
What is an embedded system? Give examples from the world around

us.

What are sensors? Digital inputs/outputs? Analogue inputs/outputs?

What are your hobbies/interests/passions? Can you think of example

embedded systems that might support these?

What about other examples for users other than yourself e.g. family

members, friends, school, community organisation, society?

Group activity

In your assigned groups, start brainstorming possible project ideas

for students for ALT4

Aim for as many ideas as you can

Record your ideas in your booklet under ALT 4:Investigate

P

Plan

The Design Process

This is a main body slide (20)

ALT4: Plan

In your assigned groups, evaluate your potential ideas for ALT 4

Choose one idea for further development

Dissect the idea

You may use the prompt questions to help you

The Design Process: Plan

ALT4: Plan

Is there a broad theme or a specific topic?

Who is the audience?

What teaching & learning strategies could you use?

What does your project do?

Does your project idea cover all the LOs for this ALT?

What other LOs can be taught through the lens of this project?

What tools or materials are needed?

What are the roles in the group?

What research or upskilling do you need to do?
P51

Group activity - Feedback

LCCS NW2
Session 6
ALT4: Design and Create

By the end of this session…

Participants will be enabled to…

• enhance their understanding of the Design stage through considering representations and

design tools, e.g. Flowcharts

• enhance their understanding of the Create stage of the Design Process

The Design Process

This is a main body slide (20)

The Design Process

Design

Flow charts

P52

Admission example

match?

match?

End

match?

match?

match?L[mid//2] match?(L[mid//2] + L[mid//2 - 1]) / 2

NY

Input age

age < 5?

Set admission to free Set admission to €5

Start

End
P52

Pseudocode

program start

check weather forecast

if rain predicted
Stay home

else
Go golfing

end if

program end

P53

Golf example

match?

match?

End

match?

match?

match?L[mid//2] match?(L[mid//2] + L[mid//2 - 1]) / 2

NY

Check the weather

forecast

Rain

predicted?

Stay home Go golfing

Start

End

Group activity

The Design Process

This is a main body slide (20)

Create Evaluate Document

From the Specification

The output from each task is a computational artefact and a

concise individual report outlining its development.

In the report, students outline where and how the core concepts

were employed.

The structure of the reports should reflect the design process

shown above in Figure 3.

Page 11

From the Specification

Initial reports could be in the form of structured presentations to

the whole class.

As students progress, reports should become detailed and

individual.

Reports are collected in a digital portfolio along with the

computational artefact and must be verified as completed by both

the teacher and the student.
Page 11

Create Evaluate Document
From the Specification

Students are expected to document, reflect and present

on each applied learning task

Page 22

Create

It is not necessary that you

finish your project – we are

concerned today about

understanding the process

and the experience

Evaluation and Travel

© PDST 2023

	Slide 1: National Workshop 2
	Slide 2: Workshop Overview
	Slide 3: Dates for your Diary for 2023/4
	Slide 4: Introducing Oide
	Slide 5: Supports Provided by Oide
	Slide 6: Purpose for the Day
	Slide 7: Key Messages
	Slide 8: LCCS NW2 Session 1
	Slide 9: By the end of this session..
	Slide 10
	Slide 11: Decomposition of a decimal number
	Slide 12: Decomposition of a binary number
	Slide 13
	Slide 14: Decimal -> Binary (another example)
	Slide 15
	Slide 16
	Slide 17: Use Modify Create
	Slide 18: Program Tracing / Debugging
	Slide 19
	Slide 20: Program Tracing / Debugging
	Slide 21: Program Tracing / Debugging
	Slide 22: Program Tracing / Debugging
	Slide 23: Program Tracing / Debugging
	Slide 24: Program Tracing / Debugging
	Slide 25: Program Tracing / Debugging
	Slide 26: Program Tracing / Debugging
	Slide 27: Program Tracing / Debugging
	Slide 28: Program Tracing / Debugging
	Slide 29: Program Tracing / Debugging
	Slide 30: Group Activity: Breakout
	Slide 31
	Slide 32
	Slide 33: 20 minute breakout
	Slide 34: Break
	Slide 35: LCCS NW2 Session 2
	Slide 36: By the end of this session …
	Slide 37
	Slide 38: What does the specification say?
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46: How to Teach Computational Thinking
	Slide 47: Successful CT Pedagogies
	Slide 48: Applying Computational Thinking Skills
	Slide 49: Cut Hive Logic Puzzles
	Slide 50: Cut Hive Logic Puzzles
	Slide 51: Challenge
	Slide 52
	Slide 53
	Slide 54
	Slide 55: Group Activity
	Slide 56: Group Activity
	Slide 57: Scenario 1 (Storytelling)
	Slide 58: Scenario 2 (Kinaesthetic)
	Slide 59: Scenario 3 (Role play)
	Slide 60: Instructions
	Slide 61
	Slide 62: Presentation
	Slide 63
	Slide 64: LCCS NW2 Session 3
	Slide 65: By the end of this session…
	Slide 66
	Slide 67: Example: Fix the syntax
	Slide 68: Example: Find the bug (semantic error)
	Slide 69: Example: Insert comments
	Slide 70: Example: Fill in the blanks
	Slide 71
	Slide 72
	Slide 73: Example 2: Parson’s Problem
	Slide 74: Example 2: Parson’s Problem
	Slide 75
	Slide 76: PRIMM
	Slide 77: PRIMM
	Slide 78: PRIMM
	Slide 79: PRIMM – Example (1 of 2)
	Slide 80: PRIMM – Example (2 of 2)
	Slide 81: Group activity
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86: Curriculum planning
	Slide 87
	Slide 88
	Slide 89: Group activity
	Slide 90: National Workshop 2
	Slide 91: Day 2 - Workshop Overview
	Slide 92: Key Messages
	Slide 93: LCCS NW2 Session 4
	Slide 94: By the end of this session…
	Slide 95: Introduction to ALTs
	Slide 96: Applied Learning Tasks (ALTs)
	Slide 97: LCCS Interwoven
	Slide 98: Introduction to ALT4
	Slide 99: Considering the ALTs…
	Slide 100: ALT4 - Embedded systems
	Slide 101: ALT4 - Learning outcomes
	Slide 102: Embedded Systems
	Slide 103: Activity: Think-Pair-Share
	Slide 104: Embedded Systems
	Slide 105
	Slide 106
	Slide 107: Matching Exercise
	Slide 108: Microprocessors/ Microcontrollers
	Slide 109: Introduction to Micro:bit
	Slide 110: Links between Micro:bit and Core Concepts
	Slide 111: LCCS Learning Outcomes
	Slide 112: Getting started
	Slide 113: Reaction Game - Demonstration
	Slide 114
	Slide 115
	Slide 116: Resources for Micro:bit
	Slide 117: Micro:bit kits
	Slide 118: Design methodologies
	Slide 119: Agile vs Waterfall
	Slide 120: Waterfall
	Slide 121: Agile
	Slide 122: The Design Process
	Slide 123: LCCS NW2 Session 5
	Slide 124: By the end of this session…
	Slide 125: The Design Process
	Slide 126: Investigate
	Slide 127: The Design Process: Investigate
	Slide 128: ALT4 - Embedded systems
	Slide 129: ALT4 - Learning outcomes
	Slide 130: ALT4 example: Inuit children
	Slide 131: ALT4: Investigate
	Slide 132: Group activity
	Slide 133: Plan
	Slide 134: The Design Process
	Slide 135: ALT4: Plan
	Slide 136: The Design Process: Plan
	Slide 137: ALT4: Plan
	Slide 138: Group activity - Feedback
	Slide 139: LCCS NW2 Session 6
	Slide 140: By the end of this session…
	Slide 141: The Design Process
	Slide 142: The Design Process
	Slide 143: Design
	Slide 144: Flow charts
	Slide 145: Admission example
	Slide 146: Pseudocode
	Slide 147: Golf example
	Slide 148: Group activity
	Slide 149: The Design Process
	Slide 150: Create Evaluate Document
	Slide 151: From the Specification
	Slide 152: From the Specification
	Slide 153: Create Evaluate Document From the Specification
	Slide 154: Create
	Slide 155: Evaluation and Travel
	Slide 156

