Oide

National Seminar 9

Applied Mathematics

Welcome \& Introductions

Introducing Oide

Oide

Lárionad
Ceannaireachta Scoile
$\rightarrow \infty$
Centre for
School Leadership

NIPT

An Clár Nảisiúnta londuchtaithe do Mhúinteciri The National Induction Programme for Teachers

An tSraith Shóisearach do Mhúinteoirí

JuniorCYCLE

for teachers

Professional Development | An tSeirbhis um Fhorbairt Service for Teachers

Applied Maths Team

Oide

Angela Dwane (Senior Learning Leader)
angela.dwane@oide.ie

Adrian McCormack (Professional Learning Leader) adrian.mccormack@oide.ie

Michael Walsh (Professional Learning Leader) michael.walsh@oide.ie

Brendan Doheny (Associate)
brendandoheny@gmail.com

Schedule

09:30-11:00	Taking Stock of The Journey So Far Supporting Students with The Modelling Project
11:00-11:15	Tea and Coffee
$11: 15-13: 00$	Modelling with Multi-Stage Dynamic Programming
13:00-14:00	Lunch
$14: 00-15: 30$	Exploring Difference Equations

Key Messages

Core to the specification is a non-linear approach which will promote the making of connections between various learning outcomes.

Strand 1 is the unifying strand and emphasises the importance of utilising mathematical modelling across all learning outcomes.

Applied Mathematics is rooted in authentic problems as a context for learning about the application of Mathematics.

Professional Development Supports

Overview of Support to Date

- 8 National Seminars
- 4 Collaboratives
- 2 Technology Workshops

Slides and additional Resources available

- 4 Webinars
- Video resources

Recordings available online
https://www.pdst.ie/post-primary/sc/appliedmaths/cpd-resources (Oide link will also be provided)

Professional Development Supports Overview of Upcoming Support

Year 4 September 2023 - May 2024

By The End of This Session You Will Have:

Discussed your experience of teaching the specification and your learning to date.

Engaged with the formulating stage of a modelling problem and having worked with others see how students' key skills that can be developed through pedagogy in the classroom.

Explored the possible ways of supporting students and developing their modelling skills before, during and after the modelling project.

Taking Stock

Engagement with the Specification
Now that the first two-year cycle of teaching the specification has been completed,

- What are your key takeaways?
- How can you best use mathematical modelling methods in your classroom?

Mentimeter

Oide

Supporting Students with the Modelling Project

Taking Stock
 The Modelling Project

Having supported students in completing a modelling project, what nuggets of wisdom would you give a teacher who is engaging with it for the first time this year?

Mentimeter

The Modelling Cycle Supporting Students

How best can teachers support students,
before...
during...
after...
the modelling project?
"Prompting the student's critical thinking in relation to the theme set out in the brief." \qquad
"Providing instructions at strategic intervals to facilitate the timely completion of the modelling project."

Applied
Mathematics

The Modelling Cycle Supporting Students

Translating the Problem to Mathematics: What mathematical approach will you use to solve the problem and why?
Where will your assumptions and variables be used in your model?

Formulating the Problem:

What is the problem being asked and what research must you do?
What variables (factors) will affect your model and what assumptions will you make?
Can you predict what the output of your model will achieve and for what context (who/what) will be affected by your model?

L.C. Applied Maths Mathematical Modelling: Self-Assessment Tool

Computing the Solution:

How did you calculate your solution and what affect did your variables and assumptions have on it?
What tools (technology etc.) did you use in your solution and did this enhance your calculations?

How will you present your solution (graphs, charts, other visual aids)?

The Modelling Cycle

 Formulating ProblemsConsider the following context:
The 2024 European football Championship takes place at multiple venues across Germany in June/July. A key feature of a team's preparation for this is planning the logistics of travel, accommodation, purchasing and allocating stock for the team and scheduling a team's
 itinerary.

Select one or more aspects of logistical planning and model the problem(s) using The Modelling Cycle.

The Modelling Cycle

 Formulating Problems
What problem statement could students initially choose to investigate?

What research and assumptions would be required for students?

What is your problem statement and what research must you do? What variables (factors) are relevant to the problem?
Can you simplify the problem into smaller manageable parts?
Consider if there are limitations to your model due to your chosen assumptions?
Can you predict what the output of your model will achieve?

The Modelling Cycle Supporting Students

Candidates should ensure that they critically reflect on new knowledge or understanding gained, how their thinking, behaviour or opinions have changed or developed since the beginning of the process, and the importance of this.

- Agricultural Science - Individual linvestigative Study
- Computer Science - Coursework Project
- Economics - Student Research Project
- Physical Education - Physical Activity Project

The Modelling Cycle

Oide Creating a Timeline

In groups, discuss an appropriate timeline for students' engagement with the project and how teachers will support them during this timeframe.

How can you draw on the mathematical modelling methods used in your classroom to support students' engagement with the project?
 :

Reflection

What were your key takeaways from this session?

How can you implement ideas from this session into your teaching?

What are the next steps for enhancing students' modelling skills in your classroom?

Tea/Coffee Break

Dynamic Programming with Multi-Stage Authentic Problems

$11: 15-13: 00$

By The End of This Session You Will Have:

Explored the use of a Concepts through Modelling approach to developing understanding of Dynamic Programming as applied to multi-stage authentic problems.

An understanding of differences between
 algorithms and the appropriate use of each in terms of their correctness and their ability to yield an optimal solution.

Resources
 Strand 2 Support

Oide

Seminar 1: Introduction to Networks and Graph Theory, Algorithms and their Applications
Seminar 2: Development of Dijkstra's Algorithm through Modelling
Seminar 4: Project Scheduling
Seminar 5: Bellman's Principle of Optimality and Dynamic Programming
Seminar 8: Exploring Project Scheduling with Project Scheduling Diagrams

All slides and relevant resources available on the Applied Mathematics section of the website under CPD Resources.

Strand 2 Algorithms

Oide

Minimum Spanning Tree

Starts from a single vertex and adds edges one at a time

Sorts edges by weight and adds them to the tree if they don't create a cycle

Generally faster for dense graphs

Strand 2 Algorithms Minimum Spanning Tree

Recall: NS 1

Concepts through Modelling Approach

Broadband for Mallow. Buildings are connected by laying cables in the ground following the current road layout. We used Prim's and Kruskal's to investigate.

Strand 2 Algorithms
 Reviewing Prim's and Kruskal's

Oide

Find a minimum spanning tree for the below network using Prim's and then Kruskal's Algorithm. There are many possible solutions.

Strand 2 Algorithms

Oide

Reviewing Prim's and Kruskal's

Strand 2 Algorithms

Recall: NS 2

Concepts through Modelling Approach

Road network with each weight representing distance in km. Use Dijkstra's Algorithm to find the shortest route.

Strand 2 Algorithms

Recall: NS 5

Concepts through Modelling Approach

Transition Year school tour to Austria, we used Bellman's to investigate the best package based on cost and activities for each student.

Strand 2 Algorithms

Oide

Optimization

Dijkstra's

Finds the shortest path between a source vertex and all other vertices

Breaks down with negative edge weights

Dynamic

 ProgrammingBreaks a problem down into smaller sub-problems. Solutions to sub-problems stored and then the solution to overall problem constructed from the solutions to the subproblems.

Strand 2 Algorithms Reviewing Dijkstra's Algorithm

Oide

Apply Dijkstra's algorithm to find the shortest path from U to Z .

Strand 2 Algorithms Reviewing Dijkstra's Algorithm

UWZ with the lowest possible weight of 18.

Strand 2 Algorithms Reviewing Dijkstra's Algorithm

Apply Dijkstra's to find the shortest path from U to Z in this network. Does it yield a correct solution?

Strand 2 Algorithms Dijkstra's Algorithm Shortest Path

Applying Dijkstra's gives a shortest path of UWYZ with a total weight of 8 . Is this correct, Is there a shorter path?

Strand 2 Algorithms

Oide

Dijkstra's Algorithm Shortest Path
The total weight of path UWXYZ is $7(3+5-2+1)$. This is the shortest path, In this instance Dijkstra yielded a sub-optimal solution. Other non-greedy more versatile algorithms may be required depending on the type of problem.

Strand 2 Algorithms
 Dynamic Programming

"Dynamic Programming and shortest paths as applied to multi-stage authentic

- Dynamic Programming is not greedy
- Uses backward recursion it takes an overall view of a probler
- Can handle maximum and minimum problems easily and negative edge weights.
- Easily applicable to problems given in the form of a table.

Main disadvantages: requires a staged network and as it stores sub-problems, the time cost and space required to implement are higher.

Strand 2 Algorithms

Dynamic Programming is based on Bellman's Principle of Optimality

Any part of the shortest/longest path between the source and sink nodes is itself a shortest/longest path

Or: 'any part of the optimal path is itself optimal'

Approaches To Mathematical Modelling in The Classroom

2

Concepts through Modelling

Explore a rich modelling problem and, as the need arises, develop understanding of new mathematical concepts through instruction, guided discovery, research, etc.

Complete a full modelling cycle.

Focus on a subset of competences

Focus on a subset of competences

Concepts then Modelling

Explore a number of mathematical concepts through suitable tasks, word problems etc., then solve a rich modelling problem. In exploring these tasks, modelling competences may also be developed.

Complete a full modelling cycle.

Interpreting a Real-World Problem

Oide

In many real-world settings the management of stock is an important consideration.

Choose a real-world problem related to the distribution or management of stock and model the problem(s) you have selected using The Modelling Cycle.

Concepts through Modelling

Interpreting a Real-World Problem Formulating Problems

Problem Statement: Joystick Junction has the last remaining stock of a new games console. What is the best route to take to get to Joystick Junction on the other side of the city?

The Modelling Cycle

Oide

Translating to Mathematics

The city can be represented with a simplified network. The values on each edge represent journey time in minutes from each vertex or node to the next and each of the nodes.

Computing Solutions

Oide

Identify the stages

Computing Solutions

Oide

Applying Bellman's Principle directly to the network

Oide

Computing Solutions

Applying Bellman's Principle using a Table

Computing Solutions

Applying Bellman's Principle using a Table

Stage	State (Vertex)	Action	Value
1	P	P-Joystick Junction	8*
	Q	Q-Joystick Junction	6*
	R	R-Joystick Junction	10*

Computing Solutions

Stage	State (Vertex)	Action	Value
$\mathbf{3} \mathbf{2}$	M	MP	$12+8=20$
		MQ	$11+6=17^{*}$
		NQ	$12+8=20$
		NR	$13+6=19^{*}$
	O	OQ	$11+10=21$
		OR	$11+10=21$

Computing Solutions

Stage 3

Stage	State (Vertex)	Action	Value
3	J	JM	$10+17=27^{*}$
		JN	$9+19=28$
	K	KM	$8+17=25 *$
		KN	$12+19=31$
		KO	$11+16=27$
	L	LN	$11+19=30$
		LO	$12+16=28^{*}$

Oide

Computing Solutions

What is the shortest route to Joystick Junction?

Stage	State	Action	Value
1	P	JJ	$0+8=8{ }^{*}$
	Q	JJ	$0+6=6$ *
	R	JJ	$0+10=10^{*}$
2		P	$12+8=20$
		Q	$11+6=17^{*}$
	N	P	$12+8=20$
		Q	$13+6=19 *$
		R	$10+11=21$
	0	Q	$10+6=16{ }^{*}$
		R	$11+10=21$
3	J	M	$10+17=27^{*}$
		N	$9+19=28$
	K	M	$8+17=25^{*}$
		N	$12+19=31$
		0	$11+16=27$
	L	N	$11+19=30$
		0	$12+16=28 *$
4	Start	J	$9+27=36$
		K	$10+25=35^{*}$
		L	$11+28=39$

The shortest route is :
Start - K - M - Q - Joystick Junction

Evaluating Solutions

Interpret your mathematical solution(s) in the context of the problem you are modelling.

How accurate and reliable is your solution based on your earlier assumptions?

How can you refine your assumptions to improve your solution and how will this change
 your solution?

Interpreting a Real-World Problem Formulating Problems

In many real-world settings the management of stock is an important consideration.

Choose a real-world problem related to the distribution or management of stock and model the problem(s) you have selected using The Modelling Cycle.

The Modelling Cycle Formulating Problems

A games manufacturer needs to distribute 500 games consoles every month and can allocate these in multiples of 100 to three different retailers. The distributor fee/profit, in $€ 100$ s, for the number of units allocated to each retailer is shown in the table.

Number of consoles allocated	100	200	300	400	500
Joystick Junction	$€ 11$	$€ 25$	$€ 30$	$€ 32$	$€ 33$
Button Bashers	$€ 15$	$€ 18$	$€ 19$	$€ 20$	$€ 21$
Gamers Grotto	$€ 7$	$€ 14$	$€ 21$	$€ 28$	$€ 35$

The manufacturer wants to know how many consoles should be allocated to each retailer to maximise their monthly income.

Interpreting a Real-World Problem Formulating Problems

Problem Statement: How should I allocate stock across a number of retailers to maximise profit?

2
Concepts through Modelling

Stage	State (units available x100)	Action (units allocate d x100)	Destination (units remaining x100)	Value (cumulative profit x100)
	0	0	0	0^{*}
	1	1	0	7^{*}
1 Gamers Grotto	2	2	0	14^{*}
	3	3	0	21^{*}
	4	4	0	28^{*}

Oide

Number of consoles allocated	100	200	300	400	500
Joystick Junction	$€ 11$	$€ 25$	$€ 30$	$€ 32$	$€ 33$
Button Bashers	$€ 15$	$€ 18$	$€ 19$	$€ 20$	$€ 21$
Gamers Grotto	$€ 7$	$€ 14$	$€ 21$	$€ 28$	$€ 35$

 Scoile agus Múinteoiri

Stage	State (units available x 100)	Action (units allocated x 100)	Destination (units remaining x100)	Value (cumulative profit $\times 100$)
2 Button Bashers	3	3	0	$19+0=19$
		2	1	$18+7=25$
		1	2	$15+14=29 *$
		0	3	$0+21=21$
	4	4	0	$20+0=20$
		3	1	$19+7=26$
		2	2	$18+14=32$
		1	3	$15+21=36$ *
		0	4	$0+28=28$

Number of consoles allocated	100	200	300	400	500
Joystick Junction	$€ 11$	$€ 25$	$€ 30$	$€ 32$	$€ 33$
Button Bashers	$€ 15$	$€ 18$	$€ 19$	$€ 20$	$€ 21$
Gamers Grotto	$€ 7$	$€ 14$	$€ 21$	$€ 28$	$€ 35$

Supporting the Protessiona Learning of School Leaders and Teachers

Stage	State (units available x100)	Action (units allocated x100)	Destination (units remaining x100)	Value (cumulative profit x100)
2 2 Button Bashers	5	5	0	$21+0=21$
		1	$20+7=27$	
		3	2	$19+14=33$
		2	3	$18+21=39$
		1	4	$0+35=35$
	0	5		

Number of consoles allocated	100	200	300	400	500
Joystick Junction	$€ 11$	$€ 25$	$€ 30$	$€ 32$	$€ 33$
Button Bashers	$€ 15$	$€ 18$	$€ 19$	$€ 20$	$€ 21$
Gamers Grotto	$€ 7$	$€ 14$	$€ 21$	$€ 28$	$€ 35$

Stage	State (units available)	Action (units allocated)	Destination (units remaining)	Value (cumulative profit)
		5	0	$33+0=33$
3 3 Joystick Junction	5	4	1	$32+15=47$
		2	2	$30+22=52$
		1	3	$25+29=54^{*}$
	0	5	$11+36=47$	
			4	$0+43=43$

Number of consoles allocated	100	200	300	400	500
Joystick Junction	$€ 11$	$€ 25$	$€ 30$	$€ 32$	$€ 33$
Button Bashers	$€ 15$	$€ 18$	$€ 19$	$€ 20$	$€ 21$
Gamers Grotto	$€ 7$	$€ 14$	$€ 21$	$€ 28$	$€ 35$

Supporting the Professiona Learning of School Leaders and Teachers

Stage	State (Units Available)	Action (Units Allocated)	Destination (Units Remaining)	Value (Cumulative Profit]
Gamers Grotto	0	0	0	$0{ }^{\text {x }}$
	1	1	0	7*
	$2 \mathbb{N}$	2	0	14^{*}
	3	3	0	$21^{\text { }}$
	4	4	0	28*
	5	5	0	35*
Button Bashers	0	0	0	$0+0=0 \times$
	1	1	0	$15+0=15^{*}$
		0	1	$0+7=7$
	2	2	0	$18+0=18$
		1	1	$15+7=22^{\text { }}$
		0	2	$0+14=14$
	3	3	0	$19+0=19$
		2	1	$18+7=25$
		1	2	$15+14=29^{\text { }}$
	1	0	3	$0+21=21$
	4	4	0	$20+0=20$
		3	1	$19+7=26$
		2	2	$18+14=32$
		1	3	$15+21=36^{\text {x }}$
		0	4	$0+28=28$
	5	5	0	$21+0=21$
		4	1	$20+7=27$
		3	2	$19+14=33$
		2	3	$18+21=39$
		1	4	$15+28=43^{\text {x }}$
		0	5	$0+35=35$
Joystick Junction	5	5	0	$33+0=33$
		4	- 1	$32+15=47$
		3	2	$30+22=52$
		2	3	$25+29=54^{\text {x }}$
		1	4	$11+36=47$
		0	5	$0+43=43$

To maximise the distributor fees/profit, the best way to allocate the 500 consoles is to distribute 200 consoles to Joystick Junction, 100 consoles to Button Bashers and 200 consoles to Gamers Grotto.

Number of consoles allocated	100	200	300	400	500
Joystick Junction	€11	± 25	630	± 32	63
Button Bashers	E15	¢18	¢19	± 20	421
Gamers Grotto	$€ 7$		\&21	± 28	435

Reflection

Oide

What were your key takeaways from this session?

What considerations are needed to take this learning back to your classroom?

Lunchtime

Exploring Difference Equations

14:00-15:30

By The End Of This Session You Will Have:
Engaged with and discussed suited range of pedagogical approaches to developing an understanding of when to use difference equations.

Explored using prior knowledge to gain an understanding of how difference equations may be developed and then formalised through authentic
 modelling problems.

Approaches to Mathematical Modelling in the Classroom

Concepts, then Modelling

Explore a number of mathematical concepts through suitable tasks, word problems etc., then solve a rich modelling problem. In exploring these tasks, modelling competences may also be developed.

Prior Knowledge

Difference Equations

A Recurrence relation is an equation that defines a sequence where the next term is $4,7,12,19,28,39, \ldots$. a function of the previous term(s).
$0,1,3,14,57,227,966, \ldots$
This mathematical relationship often involves the differences between successive values of a function of a discrete variable - hence the expression Difference equations.
$0,1,1,2,3,5,8,13,21 \ldots$
$1,2,2,4,8,32,256, \ldots$

Prior Knowledge
 Recall - Word Problem from National Seminar 3

According to legend King Shirham of India wanted to reward his servant for inventing and presenting him with the game of chess. The desire of his servant seemed modest: "Give me a grain of wheat to put on the first square of this chessboard, and two grains to put on the second square, and four grains to put on the third, and eight grains to put on the fourth and so on, doubling for each successive square, give me enough grain to cover all 64 squares."
"You don't ask for much. Your wish will certainly be granted" exclaimed the king.

Prior Knowledge

Junior Certificate Mathematics

$$
\begin{array}{rlr}
\mathrm{T}_{1}=1 & \mathrm{~T}_{1}=1=2^{0} \\
\mathrm{~T}_{2}=2 & \mathrm{~T}_{2}=2=2^{1} \\
\mathrm{~T}_{3}=4 & \mathrm{~T}_{3}=4=2^{2} \\
\mathrm{~T}_{4}=8 & \mathrm{~T}_{4}=8=2^{3} \\
\mathrm{~T}_{5}=16 & \mathrm{~T}_{5}=16=2^{4} \\
\mathrm{~S}_{64}=2^{0}+2^{1}+2^{2}+2^{3}+2^{4}+\ldots+2^{63} \\
\mathbf{2} \mathbf{x ~ S}_{64}=2^{1}+2^{2}+2^{3}+2^{4}+\ldots+2^{63}+2^{64} \\
-\mathbf{S}_{64}=-\left(2^{0}+2^{1}+2^{2}+2^{3}+2^{4}+\ldots+2^{63}\right) \\
\hline & =\mathbf{2}^{64}-\mathbf{2}^{0}=\mathbf{2}^{64}-\mathbf{1} & \mathbf{S}_{64}=\mathbf{2}^{64}-\mathbf{1}
\end{array}
$$

Prior Knowledge

Leaving Certificate Mathematics

$$
\begin{array}{ll}
\mathrm{T}_{1}=1 & \mathrm{~T}_{1}=1=2^{0} \\
\mathrm{~T}_{2}=2 & \mathrm{~T}_{2}=2=2^{1} \\
\mathrm{~T}_{3}=4 & \mathrm{~T}_{3}=4=2^{2} \\
\mathrm{~T}_{4}=8 & \mathrm{~T}_{4}=8=2^{3} \\
\mathrm{~T}_{5}=16 & \mathrm{~T}_{5}=16=2^{4} \\
\hline
\end{array}
$$

Recurrence relation $T_{n}=2^{n-1} n \varepsilon N, n>1$

$S_{64}=1+2^{1}+2^{2}+2^{3}+2^{4}+\ldots+2^{63}$
This a geometric series
The first term $\mathrm{a}=1$, the ratio $\mathrm{r}=2$

$$
S_{n}=\frac{a\left(r^{n}-1\right)}{(r-1)}=>S_{64}=\frac{1\left(2^{64}-1\right)}{(2-1)} \quad S_{64}=\left(2^{64}-1\right)
$$

What Decides the Order of an Equation?

Consider the sequence of numbers:
$0,1,1,2,3,5,8,13,21 \ldots$

$$
\begin{array}{lr}
\text { Recurrence } & U_{n+1}=U_{n}+U_{n-1} \\
\text { relation } & n>1, n \varepsilon N
\end{array}
$$

Order = difference between the iterates
$=(n+1)-(n-1)$
=> Order $=2$

This equation is called homogeneous because each term is determined by its previous terms only.

Determine the order of the following

Difference Equation	Order of the Equation	Homogeneous or InHomogeneous
$5 U_{n+1}+6 U_{n}=0$	$\mathbf{1}$	Homogeneous
$3 U_{n+2}+U_{n+1}-2 U_{n}=0$	$\mathbf{2}$	Homogeneous
$U_{n+2}-9 U_{n}=0$	$\mathbf{2}$	Homogeneous
$U_{n+3}-5 U_{n+1}+6=0$	$\mathbf{2}$	InHomogeneous

Characteristic Equation

A Characteristic Equation assists us in determining an expression for any term whether we know its preceding terms or not.
Consider the $2^{\text {nd }}$ order difference equation $U_{n+2}-5 U_{n+1}+6 U_{n}=0$
We see the coefficients of each term are $1 \mathrm{U}_{n+2}-5 \mathrm{U}_{n+1}+6 \mathrm{U}_{\mathrm{n}}=0$

Difference Equation	Homogeneous or InHomogeneous	Characteristic Equation	Roots of Equation
$\mathrm{U}_{\mathrm{n}+2}-5 \mathrm{U}_{\mathrm{n}+1}+6 \mathrm{U}_{\mathrm{n}}=0$	Homogeneous	$1 \mathrm{X}^{2}-5 \mathrm{X}+6=0$	$\mathrm{X}=2, \mathrm{X}=3$

Group Work

In groups, consider the $2^{\text {nd }}$ Order homogeneous difference equations shown and determine both the characteristic equation and the roots of those equations.

$5 U_{n+2}-6 U_{n}=0$
$3 U_{n+2}+U_{n+1}-2 U_{n}=0$
$U_{n+2}-6 U_{n+1}+9 U_{n}=0$

Feedback from Groups

Oide

\(\left.$$
\begin{array}{|c|l|l|}\hline \text { Difference Equation } & \begin{array}{l}\text { Characteristic } \\
\text { Equation }\end{array}
$$ \& Roots of Equation

\hline 5 \mathrm{U}_{\mathrm{n}+2}-6 \mathrm{U}_{\mathrm{n}}=0 \& 5 \mathrm{X}^{2}-6=0 \& X= \pm \sqrt{\frac{6}{5}}

3 \mathrm{U}_{\mathrm{n}+2}+\mathrm{U}_{\mathrm{n}+1}-2 \mathrm{U}_{\mathrm{n}}=0 \& 3 \mathrm{X}^{2}+\mathrm{X}-2=0 \& X=\frac{2}{3}, X=-1\end{array}\right]\)\begin{tabular}{|}

Two distinct roots A, B
$U_{n}=\left(I A^{n}\right)+\left(m B^{n}\right)$

\hline $\mathrm{U}_{\mathrm{n}+2}-6 \mathrm{U}_{\mathrm{n}+1}+9 \mathrm{U}_{\mathrm{n}}=0$ \& $\mathrm{X}^{2}-6 \mathrm{X}+9=0$ \& $X=3$

\hline | Two same roots A |
| :---: |
| $U_{n}=\left(I A^{n}\right)+n\left(m A^{n}\right)$ |

\hline
\end{tabular}

Mathematical Modelling Brief

In many real-world settings the management of stock is an important consideration.

Choose a real-world problem related to the distribution or management of stock and model the problem(s) you have selected using The Modelling Cycle.

Mathematical Modelling Problem

Oide

Problem Statement:

Determine the population of trout in the river Slaney over the next few years, following the introduction of a small number of trout to the river prior to their annual breeding season.

Oide

Student-Led Enquiry

In groups,

- discuss what background research that students might consider conducting in order to bring clarity to this problem.
- consider any assumptions students may make.

Outcome of Discussion

At the start of 2021 biologists introduced twelve trout to an isolated area of the river just before their annual breeding season.
They found that the population had doubled by the start of 2022.

The biologists responsible assumed that the current population of trout may be modelled using a difference equation.

Determine the Population of Trout

Formulate the problem - Assumptions
The biologist assumed that the current population of trout may be modelled by the following difference equation:

$$
\mathrm{P}_{\mathrm{n}}=2.7 \mathrm{P}_{\mathrm{n}-1}-1.8 \mathrm{P}_{\mathrm{n}-2}
$$

where P_{n} is the current population of trout in the river and $n \in N$.

$$
\mathrm{P}_{0}=12 \text { in } 2021, \mathrm{P}_{1}=24 \text { in } 2022
$$

"'Students learn that difference equations are more appropriate models If the change is discrete in time."

Determine the Population of Trout Translate to Mathematics

Oide
$\mathrm{P}_{\mathrm{n}}=2.7 \mathrm{P}_{\mathrm{n}-1}-1.8 \mathrm{P}_{\mathrm{n}-2}$ where P_{n} is the current population of trout in the river and $n \in N$.

What type of equation does this represent?
We have to
(i) Solve this difference equation.
(ii) Calculate the population of trout for say the following two years

Determine the Population of Trout

Oide Computing the Solution

Characteristic equation $\mathrm{x}^{2}-2.7 \mathrm{x}+1.8=0$
Two distinct roots α, β

Solving this quadratic leads to $x=3 / 2$ and $x=6 / 5$
The roots are different therefore we will P_n=l($\left.\alpha^{\mathrm{n}}\right)+\mathrm{m}\left(\beta^{\mathrm{n}}\right)$

$$
P_{n}=l(3 / 2)^{n}+m(6 / 5)^{n}
$$

Taking $\mathrm{P}_{0}=12$ and $\mathrm{P}_{1}=24$ we get

$$
\begin{array}{llrr}
\mathrm{P}_{0}=\mathrm{l}(3 / 2)^{0}+\mathrm{m}(6 / 5)^{0}=12 & \gg & \mathrm{l}+\mathrm{m}=12 \\
\mathrm{P}_{1}=\mathrm{l}(3 / 2)^{1}+\mathrm{m}(6 / 5)^{1}=24 & \gg & 5 l+4 \mathrm{~m}=80
\end{array}
$$

$U_{n}=\left(l \alpha^{n}\right)+\left(m \beta^{n}\right)$
$U_{n}-(1 a)+(m \beta)$

Determine the Population of Trout

Oide

Computing the Solution

Solving these simultaneous equations

$$
\begin{gathered}
I+m=12 \\
\underline{5 I+4 m=80} \\
I=32 \text { and } m=-20 \\
=>P_{n}=32(3 / 2)^{n}-20(6 / 5)^{n}
\end{gathered}
$$

The roots are different we
will use equation
$\boldsymbol{P}_{\boldsymbol{n}}=\boldsymbol{l}(\boldsymbol{\alpha})^{n}+\boldsymbol{m}(\boldsymbol{\beta})^{n}$

Determine the Population of Trout

Evaluating the Solution

> 12 trout in 2021
> 24 trout in 2022
> 43 trout in 2023
> 73 trout in 2024
"analyse, interpret \& solve difference
equations in context' p. 21

Does this seem accurate based on earlier assumption?

What effect would changing your
variables/assumptions have on your solution?

Determine the Population of Trout

 Formulate the problem - AssumptionsThe biologists, flush with success, adjusted their model to factor in the redistribution of trout to other Irish rivers.
At the start of 2025 Biologists plan to remove twenty trout from the Slaney and rehome them in rivers throughout the country.
The biologist revised their model as follows: $P_{n}=2.7 P_{n-1}-1.8 P_{n-2}-20$ where P_{n} is the current population of trout in the river and $n \in N$

Determine the Population of Trout
 Translate to Mathematics

Oide
$P_{n}=2.7 P_{n-1}-1.8 P_{n-2}-20$ where P_{n} is the current population of trout in the river and $n \in N$

What type of equation does this represent?

Using this revised model calculate the revised populations in 2025 and 2026.

Solving Inhomogeneous Equations

A Second order inhomogeneous equation is of the form:

$$
a P_{n}+b P_{n-1}+c P_{n-2}=F(n)
$$

The solution to an inhomogeneous equation has two components

$F(n)$	Particular solution
constant	constant a
Kn	$\mathrm{an}+\mathrm{b}$
$\mathrm{Kn}+\mathrm{c}$	$\mathrm{an}+\mathrm{b}$
Kn	$\mathrm{an}^{2}+\mathrm{bn}+\mathrm{c}$
$\mathrm{Kn}^{2}+\mathrm{In}+\mathrm{m}$	$\mathrm{an}^{2}+\mathrm{bn}+\mathrm{c}$
kp^{n}	$\mathrm{ap}^{\mathrm{n}}+\mathrm{b}$

$$
P_{n}=[\text { general soln.of associated homogeneous difference equation }]+[\text { particular soln.of full equation }]
$$

So, to solve an inhomogeneous difference equation we must first find the general solution to the associated equation (also known as the complimentary equation) and then the particular solution to the inhomogeneous equation.

Determine the Population of Trout Computing the Solution

Taking $P_{0}=43$ and $P_{1}=73$
Population in $2025 \mathrm{P}_{\mathrm{n}}=2.7(73)-1.8(43)-20=99.7 \approx 99$ trout in 2025
Population in $2026 \mathrm{P}_{\mathrm{n}}=2.7(99)-1.8(73)-20=115.9 \approx 115$ trout in 2026

Revised modelling Equation:
Rearranging to find particular solution:

$$
\begin{aligned}
& P_{n}=2.7 P_{n-1}-1.8 P_{n-2}-20 \\
& P_{n}-2.7 P_{n-1}+1.8 P_{n-2}=20 /
\end{aligned}
$$

$$
+1.8 \mathrm{P}_{\mathrm{n}-2}
$$

$$
=0 n-20
$$

(an+b)
$-2.7(a(n-1)+b)$
-2.7(an-a+b)
$+1.8(\mathrm{a}(\mathrm{n}-2)+\mathrm{b})$

+ 1.8(an-2a+b)
= $0 \mathrm{n}-20$
an+b

$$
0.1 \mathrm{an}=0 \mathrm{n} \Rightarrow \mathrm{a}=0
$$

$$
-0.1 b=20 \Rightarrow b=-200
$$

Solving Inhomogeneous Equations

Oide

The solution to an inhomogeneous equation has two components
$P_{n}=$ [general soln. of associated homogeneous difference equation] + [particular soln. of full equation]

$F(n)$	Particular solution
constant	constant a
Kn	$\mathrm{an}+\mathrm{b}$
$\mathrm{Kn}+\mathrm{c}$	$\mathrm{an}+\mathrm{b}$
Kn	$\mathrm{an} 2 \mathrm{bn}+\mathrm{c}$
$\mathrm{Kn}^{2}+\mathrm{In}+\mathrm{m}$	$\mathrm{an}^{2}+\mathrm{bn}+\mathrm{c}$
kp^{n}	$\mathrm{ap}^{n}+\mathrm{b}$

As we found $\alpha=\frac{3}{2}$ and $\beta=\frac{6}{5}$ earlier, we can say that
$P_{n}=l\left(\frac{3}{2}\right)^{n}+m\left(\frac{6}{5}\right)^{n}$ is our general solution of associated difference equation.
We have our particular solution, $a=0$ and $b=200$. So $a n+b$ is represented as $0 \boldsymbol{n}-200$

Combining these results we have our overall general solution $\quad \mathrm{P}_{\mathrm{n}}=l\left(\frac{3}{2}\right)^{n}+m\left(\frac{6}{5}\right)^{n}-200$

Determine the Population of Trout

Computing the Solution

$$
P_{n}=I(3 / 2)^{n}+m(6 / 5)^{n}-200
$$

"solve linear and nonlinear difference
equations"

Using earlier estimates $2025 P_{0}=99$ and $2026 P_{1}=115$

$$
P_{n}=I(3 / 2)^{n}+m(6 / 5)^{n}-200
$$

$$
\begin{array}{rlrl}
P_{0}=l(3 / 2)^{0}+m(6 / 5)^{0}-200 & =99 \Rightarrow & I+m & =299 \\
P_{1}=l(3 / 2)^{1}+m(6 / 5)^{1}-200 & =115 \Rightarrow & 15 l+12 m=3150
\end{array}
$$

Solving these simultaneous equations $l=-146$ and $m=445$

$$
P_{n}=(-146)\left(\frac{3}{2}\right)^{n}+(445)\left(\frac{6}{5}\right)^{n}-200
$$

p. 21

Determine the Population of Trout

Oide

Evaluating the Solution

"analyse, interpret \& solve difference
equations in context" p. 21

Determine the Population of Trout

Computing the Solution

$$
P_{n}=I(3 / 2)^{n}+m(6 / 5)^{n}-200
$$

"solve linear and nonlinear difference
equations" p. 21

However, if we used $2023 P_{0}=43$ and $2024 P_{1}=73$

$$
P_{n}=1(3 / 2)^{n}+m(6 / 5)^{n}-200
$$

$$
\begin{array}{rlrl}
P_{0}=I(3 / 2)^{0}+m(6 / 5)^{0}-200=43 & \Rightarrow & I+m=243 \\
P_{1}=I(3 / 2)^{1}+m(6 / 5)^{1}-200=73 \Rightarrow & 15 \mid+12 m=2730
\end{array}
$$

Solving these simultaneous equations $l=-62$ and $m=305$

$$
P_{n}=(-62)\left(\frac{3}{2}\right)^{n}+(305)\left(\frac{6}{5}\right)^{n}-200
$$

Determine the Population of Trout

Oide

Evaluating the Solution

"analyse, interpret \& solve difference
equations in context" p. 21

Extending The Learning

Determine the Population of Trout in river Slaney

"..being able to critically

evaluate mathematical models is a desirable skill for them to acquire" p. 16

Evaluating the Solution:

How accurate and reliable is your solution based on your earlier assumptions? What effect would changing your variables/assumptions have on your solution? How does your solution compare with previous solutions/iterations?
Can you refine/alter your assumptions to improve your solution and will this change your solution much?

What might a further iteration look like?
How could the model be refined to improve its accuracy?

Translating the Problem to Mathematics: What mathematical approach will you use to solve the problem and why?
Where will your assumptions and variables be used in your model?

Formulating the Problem:

What is the problem being asked and what research must you do?
What variables (factors) will affect your model and what assumptions will you make?
Can you predict what the output of your model will achieve and for what context (who/what) will be affected by your model?

L.C. Applied Maths Mathematical Modelling: Self-Assessment Tool

Computing the Solution:

How did you calculate your solution and what affect did your variables and assumptions have on it?
What tools (technology etc.) did you use in your solution and did this enhance your calculations?

How will you present your solution (graphs, charts, other visual aids)?

Evaluating the Solution:
How accurate is your solution based on your earlier assumptions?

Can you refine/alter your assumptions to improve your solution and will this change your solution much?

How will you present your final model so that it is well presented and easy to read?

Session 3: Reflection

How well did this session assist you in your understanding of how difference equations may be developed and formalised through authentic modelling problems?

How useful/relevant did you find today's cross-
 curricular linking to mathematics?

Evaluation

National Seminar 9 Evaluation

https://tinyurl.com/EVALNS9

Oide

