

Tacú leis an bhFoghlaim Ghairmiúil i measc Ceannairí Scoile agus Múinteoirí

Supporting the Professional Learning of School Leaders and Teachers

National Seminar 9

Applied Mathematics

Welcome & Introductions

Tacú leis an bhFoghlaim Ghairmiúil i measc Ceannairí Scoile agus Múinteoirí

Introducing Oide

Supporting the Professional Learning of School Leaders and Teachers

An Clár Náisiúnta londuchtaithe do Mhúinteoirí The National Induction Programme for Teachers

Professional Development | An t Service for Teachers | Ghai

An tSeirbhís um Fhorbairt Ghairmiúil do Mhúinteoirí

> Tacú leis an bhFoghlaim Ghairmiúil i measc Ceannairí Scoile agus Múinteoirí

Applied Maths Team

Angela Dwane (Senior Learning Leader) angela.dwane@oide.ie

Adrian McCormack (Professional Learning Leader) adrian.mccormack@oide.ie

Michael Walsh (Professional Learning Leader) michael.walsh@oide.ie

Brendan Doheny (Associate) brendandoheny@gmail.com

Tacú leis an bhFoghlaim Ghairmiúil i measc Ceannairí Scoile agus Múinteoirí

Schedule

09:30 - 11:00	Taking Stock of The Journey So Far Supporting Students with The Modelling Project
11:00 - 11:15	Tea and Coffee
11:15 - 13:00	Modelling with Multi-Stage Dynamic Programming
13:00 - 14:00	Lunch
14:00 - 15:30	Exploring Difference Equations

Tacú leis an bhFoghlaim Ghairmiúil i measc Ceannairí Scoile agus Múinteoirí

Key Messages

Core to the specification is a non-linear approach which will promote the making of connections between various learning outcomes. Strand 1 is the unifying strand and emphasises the importance of utilising mathematical modelling across all learning outcomes.

Applied Mathematics is rooted in authentic problems as a context for learning about the application of Mathematics.

> Tacú leis an bhFoghlaim Ghairmiúil i measc Ceannairí Scoile agus Múinteoirí

Professional Development Supports Overview of Support to Date

- 8 National Seminars
- 4 Collaboratives
- 2 Technology Workshops

Slides and additional Resources available

- 4 Webinars
- Video resources

Recordings available online

https://www.pdst.ie/post-primary/sc/appliedmaths/cpd-resources (Oide link will also be provided)

Tacú leis an bhFoghlaim Ghairmiúil i measc Ceannairí Scoile agus Múinteoirí

Professional Development Supports Overview of Upcoming Support

Year 4 September 2023 - May 2024

By The End of This Session You Will Have:

Discussed your experience of teaching the specification and your learning to date.

Engaged with the formulating stage of a modelling problem and having worked with others see how students' key skills that can be developed through pedagogy in the classroom.

Explored the possible ways of supporting students and developing their modelling skills before, during and after the modelling project.

Tacú leis an bhFoghlaim Ghairmiúil i measc Ceannairí Scoile agus Múinteoirí

Taking Stock Engagement with the Specification

Now that the first two-year cycle of teaching the specification has been completed,

- What are your key takeaways?
- How can you best use mathematical modelling methods in your classroom?

5th Year	I
Project	\checkmark
6th Year	\checkmark
Exam	√

Tacú leis an bhFoghlaim Ghairmiúil i measc Ceannairí Scoile agus Múinteoirí

Tacú leis an bhFoghlaim Ghairmiúil i measc Ceannairí Scoile agus Múinteoirí

Supporting the Professional Learning of School Leaders and Teachers

Supporting Students with the Modelling Project

Taking Stock The Modelling Project

Having supported students in completing a modelling project, what **nuggets of wisdom** would you give a teacher who is engaging with it for the first time this year?

Tacú leis an bhFoghlaim Ghairmiúil i measc Ceannairí Scoile agus Múinteoirí

The Modelling Cycle Supporting Students

How best can teachers support students,

the modelling project?

"Prompting the student's critical thinking in relation to the theme set out in the brief." "Providing instructions at strategic intervals to facilitate the timely completion of the modelling project."

0

Applied Mathematics

Guidance to support the completion of the Modelli

Oide

Tacú leis an bhFoghlaim Ghairmiúil i measc Ceannairí Scoile agus Múinteoirí

Supporting the Professional Learning of School Leaders and Teachers

LEAVING CERTIFICATE

The Modelling Cycle

Supporting Students

Tacú leis an bhFoghlaim Ghairmiúil i measc Ceannairí Scoile agus Múinteoirí

Translating the Problem to Mathematics: What mathematical approach will you use to solve the problem and why?

Where will your assumptions and variables be used in your model?

L.C. Applied Maths

Mathematical Modelling:

Self-Assessment Tool

It is fine for a problem to have more than one solution to it depending on the assumptions chosen.

Computing the Solution:

How did you calculate your solution and what affect did your variables and assumptions have on it?

What tools (technology etc.) did you use in your solution and did this enhance your calculations?

How will you present your solution (graphs, charts, other visual aids)?

It may be helpful to present

your work so that someone

unfamiliar to your project

will understand it.

Next iteration

It is important to show how your model is improving with each iteration and why you altered your assumptions/approach.

research must you do?

Formulating the Problem:

What is the problem being asked and what

What variables (factors) will affect your model

Can you predict what the output of your model

will achieve and for what context (who/what)

and what assumptions will you make?

will be affected by your model?

Evaluating the Solution: How accurate is your solution based on your earlier assumptions?

Can you refine/alter your assumptions to improve your solution and will this change your solution much?

Presenting your Final Model:

How will you present your final model so that it is well presented and easy to read?

Can visual aids be used to better communicate your work?

The Modelling Cycle

Consider the following context:

The 2024 European football Championship takes place at multiple venues across Germany in June/July. A key feature of a team's preparation for this is planning the logistics of travel, accommodation, purchasing and allocating stock for the team and scheduling a team's itinerary.

Select one or more aspects of logistical planning and model the problem(s) using *The Modelling Cycle*.

Tacú leis an bhFoghlaim Ghairmiúil i measc Ceannairí Scoile agus Múinteoirí

The Modelling Cycle Formulating Problems

"determine what assumptions are necessary to simplify the problem situation" Specification p.16

Applied

What problem statement could students initially choose to investigate?

What research and assumptions would be required for students?

What is your problem statement and what research must you do? What variables (factors) are relevant to the problem? Can you simplify the problem into smaller manageable parts? Consider if there are limitations to your model due to your chosen assumptions?

Can you predict what the output of your model will achieve?

Tacú leis an bhFoghlaim Ghairmiúil i measc Ceannairí Scoile agus Múinteoirí

The Modelling Cycle Supporting Students

Candidates should ensure that they critically reflect on new knowledge or understanding gained, how their thinking, behaviour or opinions have changed or developed since the beginning of the process, and the importance of this.

Coimisiún na Scrúduithe Stáit State Examinations Commission

Leaving Certificate Coursework

Information note for four Leaving Certificate subjects with new subject specifications

- Agricultural Science Individual Investigative Study
- Computer Science Coursework Project
- Economics Student Research Project
- Physical Education Physical Activity Project

Tacú leis an bhFoghlaim Ghairmiúil i measc Ceannairí Scoile agus Múinteoirí

The Modelling Cycle Creating a Timeline

In groups, discuss an appropriate timeline for students' engagement with the project and how teachers will support them during this timeframe.

How can you draw on the mathematical modelling methods used in your classroom to support students' engagement with the project?

Tacú leis an bhFoghlaim Ghairmiúil i measc Ceannairí Scoile agus Múinteoirí

Reflection

What were your key takeaways from this session?

How can you implement ideas from this session into your teaching?

What are the next steps for enhancing students' modelling skills in your classroom?

Tacú leis an bhFoghlaim Ghairmiúil i measc Ceannairí Scoile agus Múinteoirí

Tea/Coffee Break

Tacú leis an bhFoghlaim Ghairmiúil i measc Ceannairí Scoile agus Múinteoirí

Tacú leis an bhFoghlaim Ghairmiúil i measc Ceannairí Scoile agus Múinteoirí

Supporting the Professional Learning of School Leaders and Teachers

Dynamic Programming with Multi-Stage Authentic Problems

11:15 – 13:00

By The End of This Session You Will Have:

Explored the use of a Concepts through Modelling approach to developing understanding of Dynamic Programming as applied to multi-stage authentic problems.

An understanding of differences between algorithms and the appropriate use of each in terms of their correctness and their ability to yield an optimal solution.

Tacú leis an bhFoghlaim Ghairmiúil i measc Ceannairí Scoile agus Múinteoirí

Resources Strand 2 Support

Seminar 1:	Introduction to Networks and Graph Theory, Algorithms and their Applications
Seminar 2:	Development of Dijkstra's Algorithm through Modelling
Seminar 4:	Project Scheduling
Seminar 5:	Bellman's Principle of Optimality and Dynamic Programming
Seminar 8:	Exploring Project Scheduling with Project Scheduling
	Diagrams

All slides and relevant resources available on the Applied Mathematics section of the website under CPD Resources.

https://pdst.ie/post-primary/sc/appliedmaths/cpd-resources

Tacú leis an bhFoghlaim Ghairmiúil i measc Ceannairí Scoile agus Múinteoirí

Minimum Spanning Tree

Starts from a single vertex and adds edges one at a time

Sorts edges by weight and adds them to the tree if they don't create a cycle

Generally faster for dense graphs

Works well with sparse graphs, does not require a starting vertex

Tacú leis an bhFoghlaim Ghairmiúil i measc Ceannairí Scoile agus Múinteoirí

Strand 2 Algorithms Minimum Spanning Tree

Recall: NS 1

Concepts through Modelling Approach

Broadband for Mallow. Buildings are connected by laying cables in the ground following the current road layout. We used **Prim's** and **Kruskal's** to investigate.

Tacú leis an bhFoghlaim Ghairmiúil i measc Ceannairí Scoile agus Múinteoirí

Strand 2 Algorithms Reviewing **Prim's** and **Kruskal's**

Find a minimum spanning tree for the below network using Prim's and then Kruskal's Algorithm. There are many possible solutions.

Tacú leis an bhFoghlaim Ghairmiúil i measc Ceannairí Scoile agus Múinteoirí

Strand 2 Algorithms Reviewing **Prim's** and **Kruskal's**

Tacú leis an bhFoghlaim Ghairmiúil i measc Ceannairí Scoile agus Múinteoirí

Recall: NS 2

Concepts through Modelling Approach

Road network with each weight representing distance in km. Use **Dijkstra's** Algorithm to find the shortest route.

Tacú leis an bhFoghlaim Ghairmiúil i measc Ceannairí Scoile agus Múinteoirí

Recall: NS 5

Concepts through Modelling Approach

Transition Year school tour to Austria, we used **Bellman's** to investigate the best package based on cost and activities for each student.

Tacú leis an bhFoghlaim Ghairmiúil i measc Ceannairí Scoile agus Múinteoirí

Dijkstra's

Finds the shortest path between a source vertex and all other vertices

Breaks down with negative edge weights

Dynamic Programming

Breaks a problem down into smaller sub-problems. Solutions to sub-problems stored and then the solution to overall problem constructed from the solutions to the subproblems.

Tacú leis an bhFoghlaim Ghairmiúil i measc Ceannairí Scoile agus Múinteoirí

Optimization

Strand 2 Algorithms Reviewing **Dijkstra's** Algorithm

Apply Dijkstra's algorithm to find the shortest path from U to Z.

Tacú leis an bhFoghlaim Ghairmiúil i measc Ceannairí Scoile agus Múinteoirí

Strand 2 Algorithms Reviewing **Dijkstra's** Algorithm

UWZ with the lowest possible weight of 18.

Tacú leis an bhFoghlaim Ghairmiúil i measc Ceannairí Scoile agus Múinteoirí

Strand 2 Algorithms Reviewing **Dijkstra's** Algorithm

Apply Dijkstra's to find the shortest path from U to Z in this network. Does it yield a correct solution?

Tacú leis an bhFoghlaim Ghairmiúil i measc Ceannairí Scoile agus Múinteoirí

Strand 2 Algorithms Dijkstra's Algorithm Shortest Path

Applying Dijkstra's gives a shortest path of UWYZ with a total weight of 8. Is this correct, Is there a shorter path?

Tacú leis an bhFoghlaim Ghairmiúil i measc Ceannairí Scoile agus Múinteoirí

Strand 2 Algorithms Dijkstra's Algorithm Shortest Path

The total weight of path UWXYZ is 7 (3 + 5 - 2 + 1). This is the shortest path, In this instance Dijkstra yielded a sub-optimal solution. Other non-greedy more versatile algorithms may be required depending on the type of problem.

Tacú leis an bhFoghlaim Ghairmiúil i measc Ceannairí Scoile agus Múinteoirí
Strand 2 Algorithms Dynamic Programming

"Dynamic Programming and shortest paths as applied to multi-stage authentic problems." p. 17, specification.

- Dynamic Programming is not greedy
- Uses backward recursion it takes an overall view of a probler
- Can handle maximum and minimum problems easily and negative edge weights.
- Easily applicable to problems given in the form of a table.

Main disadvantages: requires a staged network and as it stores sub-problems, the time cost and space required to implement are higher.

> Tacú leis an bhFoghlaim Ghairmiúil i measc Ceannairí Scoile agus Múinteoirí

Strand 2 Algorithms Applying Dynamic Programming

Dynamic Programming is based on Bellman's Principle of Optimality

Any part of the shortest/longest path between the source and sink nodes is itself a shortest/longest path

Or: 'any part of the optimal path is itself optimal'

Tacú leis an bhFoghlaim Ghairmiúil i measc Ceannairí Scoile agus Múinteoirí

Approaches To Mathematical Modelling in The Classroom

Concepts then Modelling Explore a number of mathematical concepts through suitable tasks, word problems etc., then solve a rich modelling problem. In exploring these tasks, modelling competences may also be developed. 2

Concepts through Modelling Explore a rich modelling problem and, as the need arises, develop understanding of new mathematical concepts through instruction, guided discovery, research, etc.

Complete a full modelling cycle. Focus on a subset of competences

Complete a full modelling cycle. Focus on a subset of competences

Tacú leis an bhFoghlaim Ghairmiúil i measc Ceannairí Scoile agus Múinteoirí

Interpreting a Real-World Problem

In many real-world settings the management of stock is an important consideration.

Choose a real-world problem related to the distribution or management of stock and model the problem(s) you have selected using *The Modelling Cycle*.

Concepts through Modelling

2

Tacú leis an bhFoghlaim Ghairmiúil i measc Ceannairí Scoile agus Múinteoirí

Interpreting a Real-World Problem Formulating Problems

Problem Statement: Joystick Junction has the last remaining stock of a new games console. What is the best route to take to get to Joystick Junction on the other side of the city?

Tacú leis an bhFoghlaim Ghairmiúil i measc Ceannairí Scoile agus Múinteoirí Supporting the Professional Learning of School Leaders and Teachers

Translate to

Mathematics

The Modelling Cycle Translating to Mathematics

The city can be represented with a simplified network. The values on each edge represent journey time in minutes from each vertex or node to the next and each of the nodes.

Tacú leis an bhFoghlaim Ghairmiúil i measc Ceannairí Scoile agus Múinteoirí

Identify the stages

44

Applying Bellman's Principle directly to the network

Tacú leis an bhFoghlaim Ghairmiúil i measc Ceannairí Scoile agus Múinteoirí

Applying Bellman's Principle using a Table

Tacú leis an bhFoghlaim Ghairmiúil i measc Ceannairí Scoile agus Múinteoirí

Applying Bellman's Principle using a Table

Tacú leis an bhFoghlaim Ghairmiúil i measc Ceannairí Scoile agus Múinteoirí

Stage	State (Vertex)	Action	Value
	N A	MP	12 + 8 = 20
2		MQ	11 + 6 = 17*
	N	NP	12 + 8 = 20
		NQ	13 + 6 = 19*
		NR	11 +10 = 21
	0	OQ	10 + 6 = 16*
		OR	11 +10 = 21

Tacú leis an bhFoghlaim Ghairmiúil i measc Ceannairí Scoile agus Múinteoirí

Stage	State (Vertex)	Action	Value
		JM	10 + 17 = 27*
3 K L	J	JN	9 + 19 = 28
		KM	8 + 17 = 25*
	К	KN	12 + 19 = 31
		КО	11 +16 = 27
		LN	11 + 19 = 30
		LO	12 +16 = 28*

Tacú leis an bhFoghlaim Ghairmiúil i measc Ceannairí Scoile agus Múinteoirí

What is the shortest route to Joystick Junction?

Stage	State (Vertex)	Action	Value
4 Start		Start-J	9 + 27 = 36
	Start	Start-K	10 + 25 = 35*
		Start-L	11 + 28 = 39

Tacú leis an bhFoghlaim Ghairmiúil i measc Ceannairí Scoile agus Múinteoirí

Stage	State	Action	Value	
	Р	JJ	0+8 = 8*	
1	Q	JJ	0+6 = 6*	<u> </u> א
	R	JJ	0+10 = 10*	
	м	Р	12 + 8 = 20	
		Q	11+6 = 17*	
		Р	12+8 = 20	
2	N	Q	13+6 = 19*	
		R	10+11 = 21	
	0	Q	10+6 = 16*	
		R	11+10 = 21	
		М	10+17 = 27*	
	J	Ν	9+19 = 28	
		М	8+17 = 25*	
3	к	N	12+19 = 31	
		0	11+16 = 27	
		Ν	11+19 = 30	
		0	12+16 = 28*	
		J	9+27 = 36	
4	Start	K	10+25 = 35*	╻┛
		L	11+28 = 39	

The shortest route is :

Start - K - M - Q - Joystick Junction

Tacú leis an bhFoghlaim Ghairmiúil i measc Ceannairí Scoile agus Múinteoirí

Supporting the Professional Learning of School Leaders and Teachers

Oide

Evaluating Solutions

Interpret your mathematical solution(s) in the context of the problem you are modelling.

How accurate and reliable is your solution based on your earlier assumptions?

How can you refine your assumptions to improve your solution and how will this change your solution?

Tacú leis an bhFoghlaim Ghairmiúil i measc Ceannairí Scoile agus Múinteoirí

Interpreting a Real-World Problem Formulating Problems

In many real-world settings the management of stock is an important consideration.

Choose a real-world problem related to the distribution or management of stock and model the problem(s) you have selected using *The Modelling Cycle*.

Concepts through Modelling

2

Tacú leis an bhFoghlaim Ghairmiúil i measc Ceannairí Scoile agus Múinteoirí

The Modelling Cycle Formulating Problems

A games manufacturer needs to distribute 500 games consoles every month and can allocate these in multiples of 100 to three different retailers. The distributor fee/profit, in €100s, for the number of units allocated to each retailer is shown in the table.

Number of consoles allocated	100	200	300	400	500
Joystick Junction	€11	€25	€30	€32	€33
Button Bashers	€15	€18	€19	€20	€21
Gamers Grotto	€7	€14	€21	€28	€35

The manufacturer wants to know how many consoles should be allocated to each retailer to maximise their monthly income.

> Tacú leis an bhFoghlaim Ghairmiúil i measc Ceannairí Scoile agus Múinteoirí

Interpreting a Real-World Problem Formulating Problems

Problem Statement: How should I allocate stock across a number of retailers to maximise profit?

Tacú leis an bhFoghlaim Ghairmiúil i measc Ceannairí Scoile agus Múinteoirí

Ø	Oide
---	------

Stage	State (units available x100)	Action (units allocate d x100)	Destination (units remaining x100)	Value (cumulative profit x100)
	0	0	0	0*
1	1	1	0	7*
	2	2	0	14*
Gamers	3	3	0	21*
	4	4	0	28*
	5	5	0	35*

Number of consoles allocated	100	200	300	400	500
Joystick Junction	€11	€25	€30	€32	€33
Button Bashers	€15	€18	€19	€20	€21
Gamers Grotto	€7	€14	€21	€28	€35

Ø	Oide
---	------

.

Stage	State (units available)	Action (units allocated)	Destination (units remaining)	Value (cumulative profit)
2 Button Bashers	0	0	0	0+0=0 *
		1	0	15 + 0 = 15 *
	1	0	1	0 + 7 = 7
		2	0	18 + 0 = 18
	2	1	1	15 + 7 = 22 *
		0	2	0 + 14 = 14

Number of consoles allocated	100	200	300	400	500
Joystick Junction	€11	€25	€30	€32	€33
Button Bashers	€15	€18	€19	€20	€21
Gamers Grotto	€7	€14	€21	€28	€35

Formulating

Tacú leis an bhFoghlaim Ghairmiúil i measc Ceannairí Scoile agus Múinteoirí

1	1	1				(C	Dic	le
Stage	State (units	Action (units	Destination	Value	Number of consoles allocated	100	200	300	400	500
	available	x100)	remaining	(cumulative	Joystick Junction	€11	€25	€30	€32	€33
	x100)		x100)	pronexico)	Button Bashers	€15	€18	€19	€20	€21
		3	0	19 + 0 = 19	Gamers Grotto	€7	€14	€21	€28	€35
3	3	2	1	18 + 7 = 25						
	5	1	2	15 + 14 = 29*						
2	2 Button	0	3	0 + 21 = 21						
Button		4	0	20 + 0 = 20	Problems					
Basners		3	1	19 + 7 = 26	Evaluating	Mather	natical	Tra	anslate	to
4	4	2	2	18 + 14 = 32	Solutions	Mode	elling	Ма	athemati	ics
		1	3	15 + 21 = 36*		6 6 6 6				
		0	4	0 + 28 = 28		Solu	puting itions			

Supporting the Professional Learning of School Leaders and Teachers

Ø	Oide
---	------

Stage	State (units available x100)	Action (units allocated x100)	Destination (units remaining x100)	Value (cumulative profit x100)
		5	0	21 + 0 = 21
		4	1	20 + 7 = 27
2	2 Button 5 Bashers	3	2	19 + 14 = 33
Button Bashers		2	3	18 + 21 = 39
		1	4	15 + 28 = 43*
		0	5	0 + <mark>3</mark> 5 = 35

Number of consoles	100	200	300	400	500
Joystick Junction	€11	€25	€30	€32	€33
Button Bashers	€15	€18	€19	€20	€21
Gamers Grotto	€7	€14	€21	€28	€35

State (units available)	Action (units allocated)	Destination (units remaining)	Value (cumulative profit)
	5	0	33 + 0 = 33
	4	1	32 + 15 = 47
	3	2	30 + 22 = 52
5	2	3	25 + 29 = 54*
	1	4	11 + 36 = 47
	0	5	0 + 43 = 43
	State (units available) 5	State (units available)Action (units allocated)55435210	State (units available)Action (units allocated)Destination (units remaining)5504132231405

Number of consoles allocated	100	200	300	400	500
Joystick Junction	€11	€25	€30	€32	€33
Button Bashers	€15	€18	€19	€20	€21
Gamers Grotto	€7	€14	€21	€28	€35

Stage	State (Units Available)	Action (Units Allocated)	Destination (Units Remaining)	Value (Cumulative Profit)	
	0	0	0	0*	-
	1	1	0	7*	
Gamara Gratta	2 🔊	2	0	14*	5
	3	3	0	21*	
	4	4	0	28*	
	5	5	0	35*	
	0	0	0	$0 + 0 = 0^{*}$	
	1	1	0	15 + 0 = 15*	
		0	1	0 + 7 = 7	
		2	0	18 + 0 = 18	
	2	1	1	15 + 7 = 22*	
		0	2	0 + 14 = 14	
		3	0	19 + 0 = 19	
	3	2	1	18 + 7 = 25	
	Ů	1	2	15 + 14 = 29*	5
	R	0	3	0 + 21 = 21	
Button Bashers		4	0	20 + 0 = 20	
		3	1	19 + 7 = 26	
	4	2	2	18 + 14 = 32	
		1	3	15 + 21 = 36*	
		0	4	0 + 28 = 28	
		5	0	21 + 0 = 21	
		4	1	20 + 7 = 27	
	5	3	2	19 + 14 = 33	
	Ŭ	2	3	18 + 21 = 39	
		1	4	15 + 28 = 43*	
		0	5	0 + 35 = 35	
		5	0	33 + 0 = 33	
	5	4	1	32 + 15 = 47	
Joystick		3	2	30 + 22 = 52	
Junction	Ŭ	2	3	25 + 29 = 54*	μ
		1	4	11 + 36 = 47	
		0	5	0 + 43 = 43	

To maximise the distributor fees/profit, the best way to allocate the 500 consoles is to distribute

200 consoles to Joystick Junction, 100 consoles to Button Bashers and 200 consoles to Gamers Grotto.

Number of consoles allocated	100	200	300	400	500
Joystick Junction	€11	€25	€30	€32	€33
Button Bashers	E15	€18	€19	€20	€21
Gamers Grotto	€7	€14	€21	€28	€35

Tacú leis an bhFoghlaim Ghairmiúil i measc Ceannairí Scoile agus Múinteoirí

Reflection

What were your key takeaways from this session?

What considerations are needed to take this learning back to your classroom?

Lunchtime

Tacú leis an bhFoghlaim Ghairmiúil i measc Ceannairí Scoile agus Múinteoirí

Supporting the Professional Learning of School Leaders and Teachers

65

Supporting the Professional Learning of School Leaders and Teachers

Exploring Difference Equations

14:00 - 15:30

66

By The End Of This Session You Will Have:

Engaged with and discussed suited range of pedagogical approaches to developing an understanding of when to use difference equations.

Explored using prior knowledge to gain an understanding of how difference equations may be developed and then formalised through authentic modelling problems.

> Tacú leis an bhFoghlaim Ghairmiúil i measc Ceannairí Scoile agus Múinteoirí

Approaches to Mathematical Modelling in the Classroom

2

Concepts, then Modelling

Explore a number of mathematical concepts through suitable tasks, word problems etc., then solve a rich modelling problem. In exploring these tasks, modelling competences may also be developed.

Concepts through Modelling

Explore a rich modelling problem and, as the need arises, develop understanding of new mathematical concepts through instruction, guided discovery, research, etc.

> Tacú leis an bhFoghlaim Ghairmiúil i measc Ceannairí Scoile agus Múinteoirí

Supporting the Professional Learning of School Leaders and Teachers

ecall

Prior Knowledge Difference Equations

A Recurrence relation is an equation that defines a sequence where the next term is 4, 7, 12, 19, 28, 39, a function of the previous term(s).

This mathematical relationship often involves the **differences between successive values** of a function of a discrete variable – hence the expression *Difference equations.* 0, 1, 3, 14, 57, 227, 966,

```
0, 1, 1, 2, 3, 5, 8, 13, 21 ....
```

1, 2, 2, 4, 8, 32, 256,

Tacú leis an bhFoghlaim Ghairmiúil i measc Ceannairí Scoile agus Múinteoirí

Prior Knowledge

Recall - Word Problem from National Seminar 3

According to legend King Shirham of India wanted to reward his servant for inventing and presenting him with the game of chess. The desire of his servant seemed modest: "Give me a grain of wheat to put on the first square of this chessboard, and two grains to put on the second square, and four grains to put on the third, and eight grains to put on the fourth and so on, doubling for each successive square, give me enough grain to cover all 64 squares."

"You don't ask for much. Your wish will certainly be granted" exclaimed the king.

Based on an extract from "One, Two, Three...Infinity", Dover Publications

Tacú leis an bhFoghlaim Ghairmiúil i measc Ceannairí Scoile agus Múinteoirí

Prior Knowledge Junior Certificate Mathematics

Tacú leis an bhFoghlaim Ghairmiúil i measc Ceannairí Scoile agus Múinteoirí

Prior Knowledge Leaving Certificate Mathematics

T ₁ = 1	$T_1 = 1 = 2^0$
$T_2 = 2$	$T_2 = 2 = 2^1$
$T_3 = 4$	$T_3 = 4 = 2^2$
$T_4 = 8$	$T_4 = 8 = 2^3$
T ₅ = 16	$T_5 = 16 = 2^4$

<u>Recurrence relation</u> $T_n = 2^{n-1} n \epsilon N$, n>1

$$S_{64} = 1 + 2^1 + 2^2 + 2^3 + 2^4 + \dots + 2^{63}$$

This a geometric series The first term a = 1, the ratio r = 2

$$S_n = \frac{a(r^n - 1)}{(r - 1)} \Longrightarrow S_{64} = \frac{1(2^{64} - 1)}{(2 - 1)} \quad S_{64} = (2^{64} - 1)$$

Tacú leis an bhFoghlaim Ghairmiúil i measc Ceannairí Scoile agus Múinteoirí

What Decides the Order of an Equation?

Consider the sequence of numbers:

0, 1, 1, 2, 3, 5, 8, 13, 21

Recurrence
$$U_{n+1} = U_n + U_{n-1}$$
relation $n>1$, $n \in N$

Order = difference between the iterates = (n+1)-(n-1) => Order = 2

This equation is called **homogeneous** because each term is determined by its previous terms only.

Tacú leis an bhFoghlaim Ghairmiúil i measc Ceannairí Scoile agus Múinteoirí

Determine the order of the following

Difference Equation	Order of the Equation	Homogeneous or InHomogeneous
5U _{n+1} +6U _n =0	1	Homogeneous
$3U_{n+2} + U_{n+1} - 2U_n = 0$	2	Homogeneous
$U_{n+2} - 9U_n = 0$	2	Homogeneous
$U_{n+3} - 5U_{n+1} + 6 = 0$	2	InHomogeneous

Tacú leis an bhFoghlaim Ghairmiúil i measc Ceannairí Scoile agus Múinteoirí

Characteristic Equation

A Characteristic Equation assists us in determining an expression for **any term** whether we know its preceding terms or not.

Consider the 2nd order difference equation $U_{n+2} - 5U_{n+1} + 6U_n = 0$ We see the coefficients of each term are $1U_{n+2} - 5U_{n+1} + 6U_n = 0$

Difference Equation	Homogeneous or	Characteristic	Roots of
	InHomogeneous	Equation	Equation
$U_{n+2} - 5U_{n+1} + 6U_n = 0$	Homogeneous	$1X^2 - 5X + 6 = 0$	X=2 , X=3

Tacú leis an bhFoghlaim Ghairmiúil i measc Ceannairí Scoile agus Múinteoirí

Group Work

In groups, consider the 2nd Order homogeneous difference equations shown and determine both the characteristic equation and the roots of those equations.

$$5U_{n+2} - 6U_n = 0$$
$$3U_{n+2} + U_{n+1} - 2U_n = 0$$
$$U_{n+2} - 6U_{n+1} + 9U_n = 0$$

Tacú leis an bhFoghlaim Ghairmiúil i measc Ceannairí Scoile agus Múinteoirí

Feedback from Groups

Difference Equation	Characteristic Equation	Roots of Equation	
5U _{n+2} - 6U _n =0	$5X^2 - 6 = 0$	$X = \pm \sqrt{\frac{6}{5}}$	Two distinct roots A , B
$3U_{n+2} + U_{n+1} - 2U_n = 0$	$3X^2 + X - 2 = 0$	$X = \frac{2}{3}, X = -1$	$U_n = (I A^n) + (m B^n)$
$U_{n+2} - 6U_{n+1} + 9U_n = 0$	$X^2 - 6X + 9 = 0$	<i>X</i> = 3	$ \longrightarrow Two same roots A U_n = (I A^n) + n(m A^n) $

Tacú leis an bhFoghlaim Ghairmiúil i measc Ceannairí Scoile agus Múinteoirí

Mathematical Modelling Brief

In many real-world settings the management of stock is an important consideration.

Concepts, then Modelling

Choose a real-world problem related to the distribution or management of stock and model the problem(s) you have selected using *The Modelling Cycle*.

Tacú leis an bhFoghlaim Ghairmiúil i measc Ceannairí Scoile agus Múinteoirí

Mathematical Modelling Problem

Problem Statement:

Determine the population of trout in the river Slaney over the next few years, following the introduction of a small number of trout to the river prior to their annual breeding season.

Tacú leis an bhFoghlaim Ghairmiúil i measc Ceannairí Scoile agus Múinteoirí

Student-Led Enquiry In groups,

- discuss what background research that students might consider conducting in order to bring clarity to this problem.
- consider any assumptions students may make.

Tacú leis an bhFoghlaim Ghairmiúil i measc Ceannairí Scoile agus Múinteoirí

Outcome of Discussion

81

At the start of 2021 biologists introduced **twelve trout** to an isolated area of the river just before their **annual breeding season**.

They found that the population had **doubled** by the start of 2022.

The biologists responsible assumed that the current population of trout may be modelled using a difference equation.

Tacú leis an bhFoghlaim Ghairmiúil i measc Ceannairí Scoile agus Múinteoirí

Determine the Population of Trout

Formulate the problem - Assumptions

The biologist assumed that the current population of trout may be modelled by the following difference equation:

 $P_n = 2.7P_{n-1} - 1.8P_{n-2}$ where P_n is the current population of trout in the river and $n \in N$.

 $P_0 = 12$ in 2021, $P_1 = 24$ in 2022

"Students learn that difference equations are more appropriate models If the change is discrete in time." *p.21*

Tacú leis an bhFoghlaim Ghairmiúil i measc Ceannairí Scoile agus Múinteoirí

Determine the Population of Trout Translate to Mathematics

 $P_n = 2.7P_{n-1} - 1.8P_{n-2}$ where P_n is the current population of trout in the river and $n \in N$.

What type of equation does this represent?

We have to

(i) Solve this difference equation.

(ii) Calculate the population of trout for say the following two years

Tacú leis an bhFoghlaim Ghairmiúil i measc Ceannairí Scoile agus Múinteoirí

Determine the Population of Trout Computing the Solution

Two distinct roots α , β $U_n = (l\alpha^n) + (m\beta^n)$

Tacú leis an bhFoghlaim Ghairmiúil i measc Ceannairí Scoile agus Múinteoirí

Determine the Population of Trout Computing the Solution

Solving these simultaneous equations **|**+ m =12 5l + 4m = 80I = 32 and m = -20 $=> P_n = 32(3/2)^n - 20(6/5)^n$ This is the solution for the difference equation. $P_2 = 32(3/2)^2 - 20(6/5)^2 = 43.2 \approx 43$ trout in 2023 $P_3 = 32(3/2)^3 - 20(6/5)^3 = 73.44 \approx 73$ trout in 2024

The roots are different we will use equation $P_n = l(\alpha)^n + m(\beta)^n$

Tacú leis an bhFoghlaim Ghairmiúil i measc Ceannairí Scoile agus Múinteoirí

Determine the Population of Trout Evaluating the Solution

12 trout in 2021 24 trout in 2022 43 trout in 2023 73 trout in 2024

Does this seem accurate based on earlier assumption?

What effect would changing your variables/assumptions have on your solution?

"analyse, interpret & solve difference equations in context" *p.21*

Tacú leis an bhFoghlaim Ghairmiúil i measc Ceannairí Scoile agus Múinteoirí

Determine the Population of Trout Formulate the problem - Assumptions

The biologists, flush with success, adjusted their model to factor in the redistribution of trout to other Irish rivers.

At the start of 2025 Biologists plan to **remove twenty trout** from the Slaney and rehome them in rivers throughout the country.

The biologist revised their model as follows: $P_n = 2.7P_{n-1} - 1.8P_{n-2} - 20$ where P_n is the current population of trout in the river and $n \in N$

Tacú leis an bhFoghlaim Ghairmiúil i measc Ceannairí Scoile agus Múinteoirí

Determine the Population of Trout **Translate to Mathematics**

 $P_n = 2.7P_{n-1} - 1.8P_{n-2} - 20$ where P_n is the current population of trout in the river and $n \in N$

What type of equation does this represent?

Using this revised model calculate the revised populations in 2025 and 2026.

Supporting the Professional Learning of School Leaders and Teachers

Oide

Solving Inhomogeneous Equations

A Second order inhomogeneous equation is of the form:

 $aP_n + bP_{n-1} + cP_{n-2} = F(n)$

The solution to an **inhomogeneous equation** has two components

F(n)	Particular	
	solution	
constant	constant a	
Kn	an + b	
Kn+c	an + b	
Kn ²	an² + bn + c	
$Kn^2 + In + m$	an ² + bn + c	
kp ⁿ	ap ⁿ + b	

 $P_n = [general soln. of associated homogeneous difference equation] + [particular soln. of full equation]$

So, to solve an **inhomogeneous difference equation** we must first find the general solution to the <u>associated</u> equation (also known as the complimentary equation) and then the particular solution to the inhomogeneous equation.

Tacú leis an bhFoghlaim Ghairmiúil i measc Ceannairí Scoile agus Múinteoirí

Determine the Population of Trout Computing the Solution

Taking P_0 =43 and P_1 =73

Pn

(an+b)

an+b

Population in 2025 $P_n = 2.7(73) - 1.8(43) - 20 = 99.7 \approx 99$ trout in 2025

Population in 2026 $P_n = 2.7(99) - 1.8(73) - 20 = 115.9 \approx 115$ trout in 2026

<u>Revised modelling Equation:</u> <u>Rearranging to find particular solution:</u>

- 2.7P_{n-1}

 $P_{n} = 2.7P_{n-1} - 1.8P_{n-2} - 20$ $P_{n} - 2.7P_{n-1} + 1.8P_{n-2} = 20 / 20$ = 0n-20

 $\begin{array}{rl} -2.7(a(n-1)+b) & + & 1.8(a(n-2)+b) & = 0n-20 \\ -2.7(an-a+b) & + & 1.8(an-2a+b) & = 0n-20 \end{array}$

an+b -2.7an + 2.7a -2.7b + 1.8an -3.6a + 1.8b = 0n-20

+ 1.8P_{n-2}

 $0.1an = 0n \Rightarrow a = 0$ $-0.1b = 20 \Rightarrow b = -200$

Solving Inhomogeneous Equations

The solution to an inhomogeneous equation has two components

P_n = [general soln. of <u>associated homogeneous</u> difference equation] + [particular soln. of full equation]

F(n)	Particular	
	solution	
constant	constant a	
Kn	an + b	
Kn+c	an + b	
Kn ²	an² + bn + c	
$Kn^2 + In + m$	an² + bn + c	
kp ⁿ	ap ⁿ + b	

As we found $\alpha = \frac{3}{2}$ and $\beta = \frac{6}{5}$ earlier, we can say that $P_n = l \left(\frac{3}{2}\right)^n + m \left(\frac{6}{5}\right)^n$ is our general solution of associated difference equation. We have our particular solution, a = 0 and b = 200. So an + b is represented as 0n - 200

Combining these results we have our overall general solution $P_n = l \left(\frac{3}{2}\right)^n + m \left(\frac{6}{5}\right)^n - 200$

Tacú leis an bhFoghlaim Ghairmiúil i measc Ceannairí Scoile agus Múinteoirí

Determine the Population of Trout Evaluating the Solution

Determine the Population of Trout Evaluating the Solution

Extending The Learning

Determine the Population of Trout in river Slaney "...being able to critically evaluate mathematical models is a desirable skill for them to acquire" p.16

Evaluating the Solution:

How accurate and reliable is your solution based on your earlier assumptions? What effect would changing your variables/assumptions have on your solution? How does your solution compare with previous solutions/iterations? Can you refine/alter your assumptions to improve your solution and will this change your solution much?

What might a further iteration look like?

How could the model be refined to improve its accuracy?

Tacú leis an bhFoghlaim Ghairmiúil i measc Ceannairí Scoile agus Múinteoirí

Translating the Problem to Mathematics: What mathematical approach will you use to solve the problem and why?

Where will your assumptions and variables be used in your model?

L.C. Applied Maths

Mathematical Modelling:

Self-Assessment Tool

It is fine for a problem to have more than one solution to it depending on the assumptions chosen.

Computing the Solution:

How did you calculate your solution and what affect did your variables and assumptions have on it?

What tools (technology etc.) did you use in your solution and did this enhance your calculations?

How will you present your solution (graphs, charts, other visual aids)?

It may be helpful to present

your work so that someone

unfamiliar to your project

will understand it.

Next iteration

It is important to show how your model is improving with each iteration and why you altered your assumptions/approach.

research must you do?

Formulating the Problem:

What is the problem being asked and what

What variables (factors) will affect your model

Can you predict what the output of your model

will achieve and for what context (who/what)

and what assumptions will you make?

will be affected by your model?

Evaluating the Solution: How accurate is your solution based on your earlier assumptions?

Can you refine/alter your assumptions to improve your solution and will this change your solution much?

Presenting your Final Model:

How will you present your final model so that it is well presented and easy to read?

Can visual aids be used to better communicate your work?

Tacú leis an bhFoghlaim Ghairmiúil i measc Ceannairí Scoile agus Múinteoirí

Supporting the Professional Learning of School Leaders and Teachers

Session 3: Reflection

How well did this session assist you in your understanding of how difference equations may be developed and formalised through authentic modelling problems?

How useful/relevant did you find today's crosscurricular linking to mathematics?

Evaluation

National Seminar 9 Evaluation

https://tinyurl.com/EVALNS9

Tacú leis an bhFoghlaim Ghairmiúil i measc Ceannairí Scoile agus Múinteoirí

100

Tacú leis an bhFoghlaim Ghairmiúil i measc Ceannairí Scoile agus Múinteoirí