

Algorithms Manual for LCCS Teachers

Algorithms Manual
for LCCS Teachers

Algorithms

A Manual for Teachers

of

Leaving Certificate Computer Science

Please cite as: Algorithms Manual for LCCS Teachers, PDST Dublin, 2021

Algorithms Manual
for LCCS Teachers

Table of Contents

Section 1: Introduction to Algorithms ééééééééééééééééééé 4

Activity #1 éééééééééééééééééééééééééééééé... 8

Section 2: Searching and Sorting Algorithms éééééééééééééé..... 13

A Simple Sort Algorithm éééééééééééééééééééééééé.. 18

The Simple (Selection) Sort ééééééééééééééééééééééé 20

Insertion Sort ééééééééééééééééééééééééééééé. 25

Bubble Sort éééééééééééééééééééééééééééééé 32

Quicksort ééééééééééééééééééééééééééééééé 39

Linear Search ééééééééééééééééééééééééééééé 44

Binary Search ééééééééééééééééééééééééééééé 51

Activity #2 éééééééééééééééééééééééééééééé... 60

Section 3: Analysis of Algorithms éééééééééééééééééééé. 67

Big O éééééééééééééééééééééééééééééééé... 68

Activity #3 éééééééééééééééééééééééééééééé... 74

Task A ï Analysis of Search Algorithms ééééééééééééééééé... 75

Task B ï Analysis of Sorting Algorithms ééééééééééééééééé... 81

Section 4: Critical Reflection: Thoughts on unconscious and algorithmic bias é 85

Unconscious Bias ééééééééééééééééééééééééééé. 89

Algorithmic Bias éééééééééééééééééééééééééééé 90

Section 5: Final Reflection ééééééééééééééééééééééé 99

Algorithms Manual
for LCCS Teachers

 4

Section 1

Introduction to Algorithms

In recent years the word algorithm has been slowly creeping out from behind the walls of

high-tech companies and the computer science lecture halls of universities and making its

way into the public gallery modern society. And the reason for this is simple: algorithms are

all around us. They have evolved to shape the way we live our daily lives, the way we think,

and perhaps most significantly, who we are. But what exactly is an algorithm?

An algorithm is a set of rules for getting a specific output from a specific input. Each step

must be so precisely defined that it can be translated into computer language and

executed by machine

Donald Knuth (1977)

It is difficult to think of any aspect of modern society that remains untouched by algorithms ï

application areas include: arts, entertainment, education, banking, finance, insurance,

healthcare, medicine, media, social media, travel, tourism, crime, justice, transport, politics,

public services, communications, retail, security, manufacturing, military and much, much,

more. Sales, marketing, sports, games, astronomy, exploration, science and technology,

construction, engineering, agriculture, food, research and development. The list is endless.

There are algorithms to recommend our next purchases, the next book to read, the next

song to listen to, the next YouTube video to watch ï algorithms to maintain playlists, find the

perfect partner, schedule our busy lives, pay for and deliver our shopping and so on ad

infinitum.

The ubiquitous nature of algorithms and their influence on modern life should be patently

clear. And for this reason alone the benefits of having a general understanding of the way

they operate should also be clear. Simply put, life can be made easier when one has some

level of understanding about the algorithms that are used to drive and support it.

When it comes to the study of algorithms (as is the case with Leaving Certificate Computer

Science) their importance takes on an even greater significance. The study of algorithms

enables us to provide opportunities for students to ask questions that are fundamental to

computer science. Questions such as é

Á What is computable?

Algorithms Manual
for LCCS Teachers

 5

Á Does an algorithm guarantee a correct solution?

Á How optimal is this solution?

Á What is the worst case time complexity?

According to Knuth1 an algorithm has the following five important features:

1. Finiteness: An algorithm must always terminate after a finite number of steps. A

procedure that has all the characteristics of an algorithm except that it possibly lacks

finiteness may be called a computational method e.g. reactive processes

2. Definiteness: Each step must be precisely defined; the actions to be carried out must be

rigorously and unambiguously specified for each case. Algorithms that are expressed

using natural languages give rise to the possibility of ambiguity. To get around this

difficulty, formally defined programming languages or computer languages are designed

for specifying algorithms. An expression of a computational method in a computer

language is called a program.

3. Input: An algorithm has zero or more inputs, taken from a specified set of objects:

quantities that are given to it initially before the algorithm begins, or dynamically as the

algorithm runs.

4. Output: An algorithm has one or more outputs, which have a specified relation to the

inputs.

5. Effectiveness: All operations to be performed must be sufficiently basic that they can be

done exactly and in finite length.

A less formal definition of óalgorithmô is a step-by-step procedure for solving a problem or

accomplishing some end.2 According to this definition ordinary everyday instructions such as

those found in recipe books or any set of instructions (e.g. making a cup of coffee, furniture

flat-pack assembly instructions, Lego, changing the oil in a car etc.) could be called

algorithms. No computation necessary - what do you think? This definition tells us that

basically, if you can clearly describe how to do something, then you can make an algorithm

for it.

It is worth noting that there is a big difference between inventing an algorithm and using it.

Inventing an algorithm can be very difficult ï there can be multiple solutions to the same

1 Source: Knuth, D The Art of Computer Programming (Vol. 1, Fundamental Algorithms, 3rd ed.)
2 https://www.merriam-webster.com/dictionary/algorithm

https://www.merriam-webster.com/dictionary/algorithm

Algorithms Manual
for LCCS Teachers

 6

problem - and the use of computational thinking skills is essential, whereas using an

algorithm is just a matter of following the algorithmôs instructions.

V Algorithms are way of capturing intelligence and sharing it with others

V They provide general solutions to problems (but some problems are so hard that they

cannot be solved by algorithms e.g. The Halting Problem)

V They can be expressed in a variety of different ways ï programs, pseudo-code,

flowcharts etc.

V Common elements of algorithms include data acquisition, computation, sequence,

selection, iteration and a means to report the output.

V There is a close relationship between algorithms and data structures.

V The essential features of all algorithms are correctness and effectiveness

Rule Based Algorithms vs. Machine Learning Algorithms

The distinction between rule-based algorithms and AI/machine learning algorithms is very

important and therefore worth discussing.

Rule based algorithms are the traditional algorithms that are written by humans typically

using programming constructs such as sequence, selection and iteration. These are the

classic algorithms that can be debugged and tested, and behave in a deterministic fashion.

We will see later that these type of algorithms can be studied, verified and rigorously

analysed.

Although many rule-based algorithms pre-date computer algorithms (Euclidôs algorithm for

finding the greatest common divisor of two numbers and The Babylonian square-root

algorithm (sometimes called Heroôs method) are just two examples), there can be little doubt

that since the 1950s and the rise in popularity of computers there has been somewhat of an

explosion of interest and the development of new rule-based algorithms. This is largely down

to the fact that because of their speed and reliability, computers are an ideal tool for running

algorithms.

In the next section we will be taking a detailed look at a variety of searching and sorting

algorithms (i.e. linear and binary searches, simple (selection) sort, insertion sort, bubble sort

and quicksort algorithms) but there are quite literally thousands of other rule based

algorithms too. Some classic examples include Googleôs Page Rank algorithm (written by

Algorithms Manual
for LCCS Teachers

 7

Larry Page and Sergey Brin), Dijkstraôs shortest path algorithm, Cooley-Tukey algorithm

(used to break down signals into frequencies), Mooreôs Algorithm (used for scheduling and

resource allocation) and a wide variety of Greedy (heuristic) algorithms just to name a few.

All operating systems and the vast majority of application software are built using many of

these rule-based algorithms. Common examples include word-processing, spreadsheet and

database packages, web browsers, graphic/multimedia systems. Other business examples

include Customer Relationship Management (CRM) systems, Point-Of-Sale (POS) and stock

control systems, Automated Teller Machine (ATM) systems, sales, purchasing, invoicing and

accounting systems. Online systems we use to communicate with each other, purchase

goods, play games, book cinema or concert tickets, holidays, taxis, flights, hotels, and

stream movies and music to our devices are all built from rule-based algorithms.

Machine learning algorithms (and AI) differ from rule-based algorithms in a number of

respects. These type of algorithms are designed so that they can be ótrainedô over time using

a combination of very large volumes of data and human input. These inputs are used by the

algorithms to build large and complex mathematical models which are then used to make

inferences and predictions. Unlike rule-based algorithms, machine learning algorithms are

characterised by a statistical randomness that gives rise to non-deterministic (stochastic)

behaviours.

Machine learning algorithms (and AI) were discussed earlier in the section on unconscious

bias and are the subject of much debate at the moment. It is probably fair to claim that the

recent surge in popularity of machine-learning algorithms is being met by many people with

a mix of excitement and a certain degree of trepidation ï excitement at the positive potential

they hold for society, but trepidation caused by the inability in certain cases by their

designers to explain their behaviour.

For an excellent introduction to algorithms watch the BBC4 documentary, The Secret

Rules of Modern Living3 produced and directed by David Briggs and presented by

Professor Marcus du Sautoy. A nice worksheet to accompany the video is available at the

link referenced below. 4

3 https://www.youtube.com/watch?v=kiFfp-HAu64.
4 https://csilvestriblog.files.wordpress.com/2015/09/the-secret-rules-of-modern-living-algorithms.pdf

https://www.youtube.com/watch?v=kiFfp-HAu64
https://csilvestriblog.files.wordpress.com/2015/09/the-secret-rules-of-modern-living-algorithms.pdf

Algorithms Manual
for LCCS Teachers

 8

Activity #1: Introduction to Algorithms

Read the scenario below carefully and then watch the video The Secret Rules of Modern

Living, Marcus Du Sautoy (https://www.youtube.com/watch?v=kiFfp-HAu64) from 23:44 to

26:53

The Stable Marriage Problem (David Gale and Lloyd Shapely, 1962 and later Alvin Roth)

Suppose you had a group of men and a group of women who wanted to get married. The

goal is to find stable matches between two sets of people who have different preferences

and opinions on who is their best match.

The central concept is that the matches should be stable: There should be no two people

who prefer each other to the partners they actually got e.g. an unstable match would be if

Mary and John like each other better than their partners. The problem is to develop a

formula to pair everyone off as happily as possible.

Sometimes solutions to problems can have varied (and unexpected) applications.

In what other contexts do you think the Gale-Shapley algorithm could be applied?

https://www.youtube.com/watch?v=kiFfp-HAu64

Algorithms Manual
for LCCS Teachers

 9

Discussion

It is interesting to note how algorithmic solution(s) to some famous (and not so famous)

problems have found applications in entirely different (and unexpected) contexts.

The original problem context for the Gale-Shapley algorithm was college admissions i.e. how

to match students to colleges so that everyone got a place, but more importantly were happy

even if they didnôt get their first choice. However, it is quite likely that some of the following

applications of solutions to the Stable Marriage Problem were not anticipated in 1962 when

Gale-Shapley first posed the problem and invented its solution:

- As recently as 2004 Alvin Roth adapted the Gale-Shapley algorithm to help transplant

patients find donors (it is estimated that thousands of lives being saved as a result5).

Both Shapley and Roth received the Nobel Prize in 2012 for this work. (David Gale

passed away in 2008)

- In the 1990s, Roth, with backing from the National Science Foundation, began looking at

the National Residency Match Program (NRMP), a system that assigns new doctors to

hospitals around the country (USA). The NRMP was struggling because new doctors

and hospitals were often both unsatisfied with its assignments. Roth used Gale and

Shapelyôs work to reshape the NRMP matching algorithm so that it produced matches

that were more stable.

- Another application was found in assigning (client) users to servers in a large distributed

Internet service.

- General solutions to the SMP are also applied in the areas of in economics, stock

markets and marketing recommendation systems (basically any scenario which involves

supply and demand or matching sellers to buyers).

Can you think of any other contexts where solutions to the Stable Marriage Problem

could be applied? What about love?

5 https://medium.com/@UofCalifornia/how-a-matchmaking-algorithm-saved-lives-2a65ac448698

http://www.goldengooseaward.org/awardees/zfh0utmzft7uewzc3lscuvdp21ogw2
http://www.nobelprize.org/nobel_prizes/economic-sciences/laureates/2012/popular-economicsciences2012.pdf
https://medium.com/@UofCalifornia/how-a-matchmaking-algorithm-saved-lives-2a65ac448698

Algorithms Manual
for LCCS Teachers

 10

Further Work

This work can be carried out in your own time following the workshop.

Consider potential areas of application for solutions to the following problems/scenarios.

Scenario 1: The Secretary Problem (aka The Optimal Stopping Problem)

Suppose that you are in an ice cream parlour with a hundred different flavours of ice

cream: chocolate-mint, peanut butter, pepper, coffee-chocolate-garlic, and many more!

Because you do not know any of these strange combinations, the friendly ice cream

vendor allows you to taste some! You can try a little spoon of a kind of ice cream and have

to decide whether you want a full serving or want to eat something else. Unspoken rules

of politeness say that if you have declined a flavour to try a new one, you can never

choose that previous flavour again. Which strategy will lead to the best bowl of ice cream?

"

Scenario 2: Two Machine Scheduling

When you wash your clothes they have to pass through the washer and the dryer in

sequence, and different loads will take different amounts of time in each. A heavily soiled

load might take longer to wash but the usual time to dry; a large load may take the usual

time to wash but a longer time to dry. If you have several loads of laundry to do on the

same day, whatôs the best way to do them?

(This problem originated from a mathematician called Selmar Johnson. The scenario
Johnson examined was bookbinding, where each book needs to be printed on one
machine and then bound on another. Problem is to minimise the total time for the two
machines to complete all their jobs.)

"

Scenario 3: The Elevator Algorithm (aka Karpôs algorithm or Knuthôs One Tape Sort6)

How would you design an elevator algorithm that is fair, both to its passengers and the

waiting public?

6 Knuth, Donald, The Art Of Computer Programming. Vol 3, pp 357-360. òOne tape sortingò

Algorithms Manual
for LCCS Teachers

 11

Scenario 4: The Travelling Salesman Problem (TSP)

Given a list of cities and the distances between each pair of cities, what is the shortest

possible route that visits each city once, and only once, and returns to the origin city?

"

Scenario 5: The Bridges of Königsberg

The city of Königsberg in Prussia (now Kaliningrad, Russia) was set on both sides of the

Pregel River, and included two large islands which were connected to each other, or to the

two mainland portions of the city, by seven bridges. Can you devise a walk through the

city that would cross each of those bridges once and only once?

Solutions involving either of the following are unacceptable:

- reaching an island or mainland bank other than via one of the bridges, or

- accessing any bridge without crossing to its other end

"

There are many more interesting scenarios/problems to those presented on the previous

pages. You are encouraged to research some for yourself and use the space provided on

the next page to start recording your findings. Here are some ideas to get you started:

- Discuss methods for pairing socks!

- What about washing dishes?

- What is The Dining Philosopher Problem?

- Discuss the nature of the following two scenarios (are they the same?):

1) Suppose we have n tasks to complete, each with a time estimate ï how can we delegate

the tasks to two people as evenly as possible?

2) Suppose you needed to divide a large number or assorted crates into two equal weight

groups?

Browse to https://classicproblems.com/ to read more interesting Computer Science problems

and bolster your knowledge of algorithms in the process.

https://en.wikipedia.org/wiki/K%C3%B6nigsberg
https://en.wikipedia.org/wiki/K%C3%B6nigsberg
https://en.wikipedia.org/wiki/Kingdom_of_Prussia
https://en.wikipedia.org/wiki/Kaliningrad
https://en.wikipedia.org/wiki/Russia
https://en.wikipedia.org/wiki/Pregolya
https://classicproblems.com/

Algorithms Manual
for LCCS Teachers

 12

Algorithms Manual
for LCCS Teachers

 13

Section 2

Searching and Sorting Algorithms

Introduction

Sorting and searching are at the very heart of what computers do. Most of us can think of

situations from our past where we needed to search for something e.g. a name in a contact

list, or a song from a playlist. Maybe even an email or a book from a library or a product from

an online catalogue. How many times do we use a search engine in a single day?

In todayôs digital world searching and sorting algorithms are crucial for efficient retrieval and

processing of large volumes of data. Without question they are among the most important

and the most frequently used algorithms in computer science. In fact, it is estimated that

over 25% of computing time is spent on sorting with some installations spending more than

50% of their time sorting7. From an environmental perspective that can add up to a lot of

energy and greenhouse gases.

Many of us will appreciate that there are classes of algorithms that, for a given input, will

compute all possible outputs. Sometimes the amount of output can run well beyond orders of

magnitude that humans are capable of dealing with. Consider as examples algorithms for

finding the shortest possible route between two points or an algorithm to compute all the

possible winning moves from this point in a chess game. Other classes of algorithms work

by processing very large amounts of input data just to generate a relatively small amount of

output. For example, your favourite social media application might use an algorithm which

trawls through its database of millions (and even billions!) of registered users just so that it

can present them to you as suggested ófriendsô to connect with or to follow. The presentation

of the results of these algorithms in sorted order is often as important as the underlying

algorithm that was used to gather them in the first place.

Sorting makes it possible to view the same underlying data in multiple ways. For example,

products may be presented to an online user in order of price or some other metric such as

rating. A football league table sorted in alphabetic order by team would probably look very

different to the same table sorted on points. It is a combination of the frequency of the types

of computations referred to above, and the sheer volume of the data that make sorting and

searching algorithms so important.

7 Source: Fundamentals of Data Structures in Pascal (Horowitz and Shani, Pg. 335)

Algorithms Manual
for LCCS Teachers

 14

Finally, and also very importantly, as we will see later when we study the binary search

algorithm, sorting makes it possible to search very large data sets in very little time. They

also enable easy detection of duplicate values and facilitate the comparison of lists.

Research Exercise

This exercise can be carried out in your own time following the workshop.

Algorithms Manual
for LCCS Teachers

 15

So, what do we mean by sorting?

An algorithm that maps the following input/output pair is called a sorting algorithm:

Input: A list (aka array), ὒ, that contains ὲ orderable elements (often called keys):

ὒπȟρȟȢȢȢ ȟὲ ρ].

Output: A sorted permutation of ὒ such that,

ὒπ ὒρ Ễ ὒὲ ρ.

For example, ὥȟὦȟὧȟὨ is sorted alphabetically, ρȟςȟσȟτȟυ is a list of integers sorted in

increasing order, and υȟτȟσȟςȟρ is a list of integers sorted in decreasing order.

By convention, empty lists and lists consisting of only one element (singletons) are always

sorted. This is a key point for the base case of many sorting algorithms.

When the (sorted) output occupies the same memory as was used to hold the original

(unsorted) input the sorting is said to have been done in place. This is a desirable feature for

sorting algorithms to have because it means they have little or no additional space

requirements (on top of the size of the list that is being sorted).

What is searching?

An algorithm that maps the following input/output pair is called a search algorithm:

Input: An list, ὒ, that contains ὲ orderable elements (often called keys) ὒπȟρȟȢȢȢ ȟὲ ρ] and

some target value commonly referred to as an argument.

Output: If the argument is found in L it is conventional to return its zero-based positional

offset (i.e. the index) and if the argument is not found some implementations return the

length of the list while others return ρ. (Either of these two outputs can be used to indicate

that the argument doesnôt exist in L.)

For example, a search to find argument Ȭὧȭ in the list L, Ὠȟὥȟὧȟὦ would return ς and a search

to find argument Ȭᾀȭ (or any other value not on L) in the same list would return either τ or ρ.

Algorithms Manual
for LCCS Teachers

 16

For any given problem, it is quite possible that there is more than one algorithm that

represents a correct solution. Two good examples of this are the problems of searching

sorting. Dozens of different algorithms have been written to solve this problem. LCCS names

these six.

For the purpose of this workshop we will confine our attention to searching and sorting

numeric data (as opposed to alphanumeric or data of any other datatype) that are stored

using the list data structure (aka an array).

When we come to look at the implementation of some of these algorithms we will find it is

necessary to have a working knowledge of lists i.e. indexing and traversals, the use of

comparison operators (the law of trichotomy and the law of transitivity), and how to

swap/exchange values. It will also be necessary to have a knowledge of iteration and useful

to have an understanding of recursion.

Algorithms Manual
for LCCS Teachers

 17

List Traversal and The Swap Operation

A more detailed description of the various search and sort algorithms is presented in the

following pages. (In the workshop we skip directly to Activity # 2 on page 60.)

Algorithms Manual
for LCCS Teachers

 18

A Simple Sort Algorithm

We will start our discussion of sort algorithms with this presentation of what is perhaps the

simplest sort of all.

Letôs consider the process of sorting the seven unsorted cards shown here.

The desired output is:

One approach is to start by finding the smallest card in the unsorted list and moving it into a

new list. The smallest card is 4 and this is moved to the new list as illustrated.

Original (Unsorted) List Ą

New (Sorted) List Ą

We proceed by moving the next smallest card (i.e. 5) from the original list and adding it to

the end of the new list.

Original (Unsorted) List Ą

New (Sorted) List Ą

This process of finding the smallest card from the unsorted list and moving it to the end of

the sorted list continues until there are no cards left in the original list and all the cards are

sorted.

Algorithms Manual
for LCCS Teachers

 19

In general, the simple sort works by repeatedly selecting the smallest item from an unsorted

list and moving it to a second list. Once all the items have been removed from the unsorted

list, the second list will contain the items in sorted order.

The sequence of steps is as follows:

1. Initialise an unsorted list

2. Initialise an empty sorted list

3. Repeat as long as there are items in the unsorted list

4. Find the smallest item

5. Move the smallest item to the sorted list

6. Stop

These steps can be translated into the following Python code.

A Very Simple Sort v1

unsorted_list = [9, 6, 10, 4, 8, 5, 7] # the list to be sorted

sorted_list = [] # the initial (empty) sorted list

Loop over every element in the unsorted list

for i in range(len(unsorted_list)):

 smallest = min(unsorted_list) # min returns the smallest

 so rted_list.append(smallest) # append the smallest to the sorted list

 unsorted_list.remove(smallest) # remove the smallest from unsorted_ list

It is important to note that the above code exploits the min built-in function to find the

smallest item. The actual algorithm for min involves comparing each element to every other

element in the list.

A note on performance

The above technique it is not considered to be a very efficient algorithm. The main reason

for this is that it requires twice as much memory as the size of the original sorted list i.e. in

order to sort a list of size N, the algorithm the space requirements are 2N. This becomes

impractical when the number of items in the list becomes large.

Algorithms Manual
for LCCS Teachers

 20

The Simple (Selection) Sort

The selection sort algorithm is a variation of the algorithm just presented with one important

difference ï the items are sorted óin placeô i.e. without the need for a second list.

The algorithm maintains a marker such that at all times:

- all items to the right of the marker are unsorted

- all items to the left of the marker have been sorted.

This example shows an unsorted list with the marker in its initial position pointing to the first

item in the list.

The algorithm proceeds by finding the smallest item to the right of the marker ï in this case 4

ï and then swapping this item with the item at the marker. The marker is then advanced to

the next position as illustrated.

In the next pass the smallest item (to right of the marker, i.e.5) is swapped with the item

pointed to by the marker (i.e. 6). This leaves the list looking like this:

Algorithms Manual
for LCCS Teachers

 21

This process continues in a systematic fashion until all the items in the list have been

processed.

6 has just been swapped with 10. The next swap will be 9 and 7.

9 has just been swapped with 7 and the marker is advanced to 8 ï since no item to the right

of the marker is smaller than 8 the list will remain unchanged.

The list remains unchanged and the marker is advanced to 10.

9 is swapped with 10 and the list is sorted.

Algorithms Manual
for LCCS Teachers

 22

The steps in the selection sort algorithm are as follows:

1. Initialise an unsorted list

2. Initialise a marker

3. Loop across every list item

4. Find the minimum item to the right of the marker

5. Swap this item with the item at the marker

6. Advance the marker to the right one position

7. Stop

These steps are annotated in the Python implementation shown here.

Simple (Selection) Sort v1

1. Initialise an unsorted list

L = [9, 6, 10, 4, 8, 5, 7]

2. Initialise a marker

marker = 0

3. Traverse through all list items

while marker < len(L):

 # 4. Find the minimum item to the right of the marker

 index_of_min = marker

 for j in range(marker+1, len(L)):

 if L[index_of_min] > L[j]:

 index_of_min = j

 # 5. Exchange the smallest item with the item at the marker

 temp = L[marker] # save the item at the marker

 L[marker] = L[index_of_min] # copy 1

 L[index_of_min] = temp # copy 2

 # 6. Advance the marker to the right by 1 position

 marker = marker+1

7. Stop

- The values to be sorted are stored in a list called L.

- The variable marker is used to store the index that will contain the next item to be

sorted. All items to the left of marker are sorted and all items to the right of marker are

yet to be processed.

Algorithms Manual
for LCCS Teachers

 23

- The variable index_of_min is the index of the smallest item to the right of the marker.

The item at this position will be swapped with the item at the marker ï this is the heart of

the algorithm.

The illustration below depicts the changing values of marker and index_of_min as the

algorithm sorts a list of 7 items in L.

Exercises ï Simple (Selection) Sort

1. Use the simple (selection) sort algorithm to sort the list [7, 8, 5, 2, 4, 6, 3] shown below.

(Fill in the blanks in the same manner as above.)

Algorithms Manual
for LCCS Teachers

 24

2. Perform a simple (selection) sort on the face values of the following cards.

Algorithms Manual
for LCCS Teachers

 25

Insertion Sort

We can develop our understanding of the insertion sort as follows:

- a list with one item is already sorted.

- a list with two items can be sorted by sorting the second item relative to the first. If the

second item is greater than the first, the two items are already sorted and nothing further

needs to be done; otherwise we obtain our sorted list by swapping the two items.

- a list with three items can be sorted by sorting the first two items (as just described) and

then sorting the third item relative to the first two.

- a list with four items can be sorted by sorting the first three items (as just described) and

then sorting the fourth item relative to the first three.

- And so on.

Example

Letôs say we were asked to sort the list of numbers shown below in ascending order.

The desired output is:

The insertion sort starts at the leftmost item. It sets a marker between the first and second

item. Everything to the left of the marker is always sorted and everything to the right of the

marker remains to be sorted. This is illustrated as follows:

The algorithm proceeds as follows until the entire list is sorted:

1. Select the first item from the unsorted list (in this case 7)

2. Insert the selected item into the correct position within the sorted this (this is done by

swapping this item to the left until it arrives at the correct position)

3. Advance the marker to the right by one position

Algorithms Manual
for LCCS Teachers

 26

After following these three instructions the 7 remains in the same positon (as it is already

sorted relative to 5) and the marker is advanced to the right by 1. The list now looks like this:

The next item to sort is 3 (because this is the first item in the unsorted list) and so 3 is

inserted into the sorted list. This is what the list looks like after 3 has been inserted. The next

item to insert will be 6.

By this point you may be wondering how, on each pass, the selected item gets inserted into

its correct position. Weôll come to this soon ï for the moment itôs important to grasp the outer

loop which iterates over each item in the list.

At this point 6 has been inserted into the sorted list and the next item to sort is 2.

This is what the list looks like after 2 has been inserted. The next item to sort is 9.

Since 9 is already sorted relative to the list on its left the list will remain unchanged. We just

advance the marker to the right by one position and consider the next item to sort which is 1.

Algorithms Manual
for LCCS Teachers

 27

This is what the list looks like before 1is inserted into its correct (sorted) position.

This is what the list looks like after 1 has been inserted. The next item to sort is 8.

This is what the list looks like after 8 has been inserted. The next (and final) item to sort is 4.

This is what the list looks like after 4 has been inserted. There are no more items to the right

of the marker and so the algorithm terminates.

Because we have maintained the list to the left of the marker in a sorted state throughout,

we can safely conclude that this final list is sorted.

Reflection Exercise

1. How many insertions do you think would be necessary if the initial list was

a) already sorted e.g. 1, 2, 3, 4, 5

b) in reverse order e.g. 5, 4, 3, 2, 1

2. Generalise your answer to 1 for a list of any size (i.e. a list of size ὲ.)

Algorithms Manual
for LCCS Teachers

 28

Inserting the item to its correct position

Before we look at an implementation of the insertion sort, it is helpful to understand how step

2 of the algorithm works. Step 2 says insert the selected item into the correct position within

the sorted this. How do we do this?

Consider the transition (shown here) that takes place in the final step of our example. The

question is: how does the 4 get inserted into the correct position?

From:

To:

The answer is: 4 is repeatedly swapped back with all larger numbers to its left. The step-by-

step sequence of swaps are illustrated below:

Start

Swap 9 and 4

Swap 8 and 4

Swap 7 and 4

Swap 6 and 4

Swap 5 and 4

Stop

The algorithm for this swap sequence is shown in the code below.

 # repeatedly swap a[j] with larger numbers to its left

 while (a[j] < a[j - 1] and j>0):

 t emp = a[j]

 a[j] = a[j - 1]

 a[j - 1] = t emp

 j = j - 1

Algorithms Manual
for LCCS Teachers

 29

The full Python implementation of the insertion sort is shown below:

1. Initialise an unsorted list

t he_l ist = [5, 7, 3, 6, 2]

2. Initialise a marker

marker = 1

3. Traverse through all list items

while (marker < len(t he_list)):

 # 4. Insert the selected item to its correct position

 j = marker

 while (t he_list [j] < t he_list [j - 1] and j>0):

 tmp = the _l ist[j]

 t he_list [j] = t he_list [j - 1]

 t he_list [j - 1] = tmp

 j = j - 1

 # 6. Advance the marker to the right by 1 position

 marker = marker+1

Starting with t he_list comprising of [5, 7, 3, 6, 2] the table below highlights the

comparisons and exchanges that take place on each pass of the insertion sort algorithm.

Pass State of List (before-> after) Comment

1 [5, 7, 3, 6, 2] -> [5, 7, 3, 6, 2]
5 and 7 are compared but not exchanged since
they are both in order relative to one another

2
[5, 7, 3, 6, 2] -> [5, 3, 7, 6, 2]
[5, 3, 7, 6, 2] -> [3, 5, 7, 6, 2]

7 and 3 are compared and exchanged
5 and 3 are compared and exchanged

3 [3, 5, 7, 6, 2] -> [3, 5, 6, 7, 2] 7 and 6 are compared and exchanged

4

[3, 5, 6, 7, 2] -> [3, 5, 6, 2, 7]
[3, 5, 6, 2, 7] -> [3, 5, 2, 6, 7]
[3, 5, 2, 6, 7] -> [3, 2, 5, 6, 7]
[3, 2, 5, 6, 7] -> [2, 3, 5, 6, 7]

7 and 2 are compared and exchanged
6 and 2 are compared and exchanged
5 and 2 are compared and exchanged
3 and 2 are compared and exchanged

The total number of passes is four. The total number of comparison operations is eight and

the total number of exchanges is seven.

Algorithms Manual
for LCCS Teachers

 30

Exercises ï Insertion Sort

1. Explain what is going on at each stage of the insertion sort algorithm below.

Make sure to identify all comparison and exchange operations.

Data Comment

This is the initial unsorted list.

Total number of comparison operations:

Total number of exchanges:

Algorithms Manual
for LCCS Teachers

 31

2. Perform an insertion sort on the following list of integers:

Algorithms Manual
for LCCS Teachers

 32

Bubble Sort

The bubble sort algorithm works by repeatedly comparing adjacent element and swapping

them if they are out of order. The effect is that on each pass of the bubble sort, the largest

unsorted item óbubblesô towards the end of the list into its sorted position.

The algorithm is summarised below for an ascending order sort:

1. Initialise an unsorted list

2. Traverse across every element in the list

3. Compare all adjacent elements starting from the beginning

4. If the elements are out of order, then swap them

Example

Letôs look at how the bubble sort algorithm sorts the

list of numbers shown here into ascending order.

After
Pass

State of List (at the end of the pass) Explanation

1

After pass 1, 7 has óbubbledô up
to the top of the list.

2

After pass 2, 6 has bubbled into
its sorted position.

3

After pass 3, 5 has bubbled into
its position.

4

After pass 4, 3 has bubbled into
its position.

5

After pass 5, 2 has bubbled into
its position.

Notice that 5 passes over the list were required in order to sort the 5 items. In general, the

bubble sort will take ὲ passes to sort a list of ὲ items.

Algorithms Manual
for LCCS Teachers

 33

We now examine what happens in pass 1 in greater detail. The following illustrations depict

the exchanges that take place in pass 1, and in particular, explain how 7 bubbles to the end

of the list.

This is the initial list.

The first two numbers to be compared are 5 and
7. Since these two numbers are in order no
exchange is necessary.

The algorithm then proceeds by comparing the
next adjacent pair i.e. 7 and 3. Since they are out
of order they must be swapped.

This is what the list looks like after 7 and 3 have
been swapped.

The algorithm then compares 7 and 6 and since
these two numbers are out of order they must be
swapped.

6 and 7 have been swapped.

7 and 2 are the next ajacent pair to be compared.
Since 7 is greater than 2 they are swapped.

This is the final state of the list after pass 1. As
there are no more adjacent pairs the algorithm
proceeds to pass 2.

Notice that in the above list of 5 items there are 4 comparisons. In general, for a list of ὲ

elements, the bubble sort will make ὲ ρ comparisons on each pass.

Reflection Exercise

Do you think the bubble sort is an efficient algorithm? Justify your answer.

Algorithms Manual
for LCCS Teachers

 34

We will now look at a Python implementation of the bubble sort algorithm.

Bubble Sort v1

1. Initialise an unsorted list

L = [5, 7, 3, 6, 2]

print("INPUT (initial list): ", L)

2. Traverse across every element in the list

for i in range(len(L)):

 # 3. Compare all adjacent elements starting from the beginning

 for j in range(len(L) - 1):

 # 4. if the elements are out of order, then swap them

 if L[j] > L[j+1]:

 te mp = L[j+1]

 L[j+1] = L[j]

 L[j] = temp

print("OUTPUT (sorted list): ", L)

The exchanges that take place on each pass are highlighted below

Pass Exchanges (before -> after) Comment

1

[5, 7, 3, 6, 2] -> [5, 7, 3, 6, 2]
[5, 7, 3, 6, 2] -> [5, 3, 7, 6, 2]
[5, 3, 7, 6, 2] -> [5, 3, 6, 7, 2]
[5, 3, 6, 7, 2] -> [5, 3, 6, 2, 7]

This sequence of exchanges was detailed on
the previous page. Notice that after 4
comparisons and 3 exchanges 7 has bubbled
up to the end of the list

2

[5, 3, 6, 2, 7] -> [3, 5, 6, 2, 7]
[3, 5, 6, 2, 7] -> [3, 5, 6, 2, 7]
[3, 5, 6, 2, 7] -> [3, 5, 2, 6, 7]
[3, 5, 2, 6, 7] -> [3, 5, 2, 6, 7]

Notice that 5 and 3 are initially exchanged.
5 and 6 are compared but not exchanged
because 6 is bigger. 6 and 2 are then
exchanged. This brings 6 to its sorted position.

3

[3, 5, 2, 6, 7] -> [3, 5, 2, 6, 7]
[3, 5, 2, 6, 7] -> [3, 2, 5, 6, 7]
[3, 2, 5, 6, 7] -> [3, 2, 5, 6, 7]
[3, 2, 5, 6, 7] -> [3, 2, 5, 6, 7]

3 is compared to 5 but there is no exchange (as
they are in order). Then 5 is compared to 2 and
they are exchanged. 5 is compared to 6 and
then 7 but no exchanges ensue and so 5 is in
its sorted positon.

4

[3, 2, 5, 6, 7] -> [2, 3, 5, 6, 7]
[2, 3, 5, 6, 7] -> [2, 3, 5, 6, 7]
[2, 3, 5, 6, 7] -> [2, 3, 5, 6, 7]
[2, 3, 5, 6, 7] -> [2, 3, 5, 6, 7]

3 is exchanged with 2 to bring it to its final
sorted position. No further exchanges take
place.

5

[2, 3, 5, 6, 7] -> [2, 3, 5, 6, 7]
[2, 3, 5, 6, 7] -> [2, 3, 5, 6, 7]
[2, 3, 5, 6, 7] -> [2, 3, 5, 6, 7]
[2, 3, 5, 6, 7] -> [2, 3, 5, 6, 7]

Although each pair of adjacent items are
compared, no exchanges take place as the list
happens to be sorted. The comparisons are 2
with 3, 3 with 5, 5 with 6 and 6 with 7.

Algorithms Manual
for LCCS Teachers

 35

By this stage it should be evident that the bubble sort is not a very efficient algorithm. We will

discuss two inefficiencies:

1. The first inefficiency derives from the fact the outer loop traverses over every element in

the list ï even if the list is already sorted (and no matter how many items the algorithm

thinks it has left to sort).

To highlight this problem let us consider how the algorithm behaves if it is presented with

a list that was already sorted e.g. L = [1, 2, 3, 4] . The algorithm proceeds to

make 4 passes over the data - each pass compares the adjacent elements (3

comparisons: 1 with 2, 2 with 3 and 3 with 4). No exchange ever ensues since elements

are all in the required order giving a total of 12 unnecessary comparison operations.

Now consider the algorithmôs behaviour if the initial list look like this: [4, 2, 3, 1] . By

the end of the first pass 4 would have bubbled to the end and the list would be sorted.

Despite this, the algorithm would continue with three more óexchange-lessô passes. In

this case we we have 9 unnecessary comparison operations

In order to eliminate this inefficiency, we introduce a flag called exchange . The outer

loop is modified so that the program traverses across every element as long as

exchange has a value of True . The flag is initialised to False at the start of each pass

and set to True only when an exchange occurs.

Bubble Sort v2

1. Initialise an unsorted list

aList = [1, 2, 3, 4]

exchange = True

i = 0

2. Traverse across every element as long as there are exchanges

while (i < len(L)) and (exchange == True) : # or just óexchangeô

 exchange = False # assume that there will be no exchanges

 # 3. Compare all adjacent elements starting from the beginning

 for j in range(len(L) - 1):

 # 4. if the elements are out of orde r, then swap them

 if L[j] > L[j+1]:

 temp = L[j+1]

 L[j+1] = L[j]

 L[j] = temp

 exchange = True # we've done an exchange!

 i = i +1 # increment the loop counter

Algorithms Manual
for LCCS Teachers

 36

Although it might seem trivial, this is a decent improvement on the previous version of

the algorithm. The algorithm now recognises (by the absence of any exchanges) when

the list is sorted and can terminate accordingly. Consider how many comparison

operations this would save in a sorted list of 1,000,000 items.

2. The second inefficiency in the algorithm derives from the fact that the algorithm ignores

the items it has already sorted on previous passes. To illustrate this point clearly let us

return to our earlier example. The table below highlights the (unnecessary) comparisons

that are made involving items that have already been sorted.

Pass State of List (before-> after) Comment

1 [5, 7, 3, 6, 2] -> [5, 3, 6, 2, 7]
After pass 1, 7 has been moved into its sorted
position. There are no unnecessary comparisons.

2 [5, 3, 6, 2, 7] -> [3, 5, 2, 6, 7]
6 is unnecessarily compared to 7 at the end of
pass 2 (because since 7 has already been sorted
the comparison cannot result in an exchange).

3 [3, 5, 2, 6, 7] -> [3, 2, 5, 6, 7]
5 is unnecessarily compared to 6 and 6 is
unnecessarily compared to 7 at the end of pass 2

4 [3, 2, 5, 6, 7] -> [2, 3, 5, 6, 7] There are 3 unnecessary comparisons

5 [2, 3, 5, 6, 7] -> [2, 3, 5, 6, 7] All 4 comparisons are unnecessary.

Each pass makes ὲ ρ comparisons even though the comparisons involving the sorted

items cannot result in an exchange. The solution is to reduce the number of iterations of the

inner loop by 1 on each pass of the data.

This is done in our final implementation of the bubble sort which is shown on the next page.

The algorithm works by maintaining a variable, Ὥ such that for a list of length ὲ:

- all items ὃπ ȢȢὭ ρ are unsorted and

- all items ὃὭ ȢȢὲ ρ are sorted

Algorithms Manual
for LCCS Teachers

 37

Bubble Sort v3

1. Initialise an unsorted list

L = [5, 7, 3, 6, 2 , 4, 1]

print("INPUT (initial list): ", L)

exchange = True

n = len(L)

i = 0

2. Traverse across every element as long as there are exchanges

while (i < n) and exchange:

 print("BEFORE PASS %d: %s " %(i +1, L))

 exchange = False # assume that there will be no exchanges

 # 3. Compare all unsorted adjacent elements

 for j in range(n - i - 1):

 # 4. if the elements are out of order, then swap them

 print("%s " % L, end=" - > ")

 if L[j] > L[j+ 1]:

 L[j], L[j+1] = L[j+1], L[j] # Canonical swap!

 exchange = True # we've done an exchange!

 print("%s " % L)

 print("AFTER PASS %d: %s " %(i +1, L))

 i = i +1 # increment the loop counter

print("OUT PUT (sorted list): ", L)

Take some time to study the code and understand how the for loop highlighted in the

above code is used to improve the efficiency of earlier versions of the bubble sort algorithm.

Notice the use of the print statements to display the states of the list as the sort

progresses - the output is shown on the next page.

As an exercise you might consider modifying the code so that it computes the following:

- the number comparisons on each pass

- the total number of exchanges on each pass

- the total number of comparisons

- the total number of exchanges

Algorithms Manual
for LCCS Teachers

 38

Exercise ï Bubble Sort

The data shown on the left below was generated by our final implementation of the bubble

sort algorithm shown on the previous page. Use the right hand column to explain the

progress of the algorithm.

INPUT (initial list): [5, 7, 3, 6, 2, 4, 1]

BEFORE PASS 1: [5, 7, 3, 6, 2, 4, 1]

[5, 7, 3, 6, 2, 4, 1] -> [5, 7, 3, 6, 2, 4, 1]

[5, 7, 3, 6, 2, 4, 1] -> [5, 3, 7, 6, 2, 4, 1]

[5, 3, 7, 6, 2, 4, 1] -> [5, 3, 6, 7, 2, 4, 1]

[5, 3, 6, 7, 2, 4, 1] -> [5, 3, 6, 2, 7, 4, 1]

[5, 3, 6, 2, 7, 4, 1] -> [5, 3, 6, 2, 4, 7, 1]

[5, 3, 6, 2, 4, 7, 1] -> [5, 3, 6, 2, 4, 1, 7]

AFTER PASS 1: [5, 3, 6, 2, 4, 1, 7]

Pass 1:

5 is compared with 7. No exchange

7 is exchanged with 3

BEFORE PASS 2: [5, 3, 6, 2, 4, 1, 7]

[5, 3, 6, 2, 4, 1, 7] -> [3, 5, 6, 2, 4, 1, 7]

[3, 5, 6, 2, 4, 1, 7] -> [3, 5, 6, 2, 4, 1, 7]

[3, 5, 6, 2, 4, 1, 7] -> [3, 5, 2, 6, 4, 1, 7]

[3, 5, 2, 6, 4, 1, 7] -> [3, 5, 2, 4, 6, 1, 7]

[3, 5, 2, 4, 6, 1, 7] -> [3, 5, 2, 4, 1, 6, 7]

AFTER PASS 2: [3, 5, 2, 4, 1, 6, 7]

Pass 2:

5 is exchanged with 3

5 is compared with 6. No exchange

BEFORE PASS 3: [3, 5, 2, 4, 1, 6, 7]

[3, 5, 2, 4, 1, 6, 7] -> [3, 5, 2, 4, 1, 6, 7]

[3, 5, 2, 4, 1, 6, 7] -> [3, 2, 5, 4, 1, 6, 7]

[3, 2, 5, 4, 1, 6, 7] -> [3, 2, 4, 5, 1, 6, 7]

[3, 2, 4, 5, 1, 6, 7] -> [3, 2, 4, 1, 5, 6, 7]

AFTER PASS 3: [3, 2, 4, 1, 5, 6, 7]

Pass 3:

BEFORE PASS 4: [3, 2, 4, 1, 5, 6, 7]

[3, 2, 4, 1, 5, 6, 7] -> [2, 3, 4, 1, 5, 6, 7]

[2, 3, 4, 1, 5, 6, 7] -> [2, 3, 4, 1, 5, 6, 7]

[2, 3, 4, 1, 5, 6, 7] -> [2, 3, 1, 4, 5, 6, 7]

AFTER PASS 4: [2, 3, 1, 4, 5, 6, 7]

Pass 4:

BEFORE PASS 5: [2, 3, 1, 4, 5, 6, 7]

[2, 3, 1, 4, 5, 6, 7] -> [2, 3, 1, 4, 5, 6, 7]

[2, 3, 1, 4, 5, 6, 7] -> [2, 1, 3, 4, 5, 6, 7]

AFTER PASS 5: [2, 1, 3, 4, 5, 6, 7]

Pass 5:

BEFORE PASS 6: [2, 1, 3, 4, 5, 6, 7]

[2, 1, 3, 4, 5, 6, 7] -> [1, 2, 3, 4, 5, 6, 7]

AFTER PASS 6: [1, 2, 3, 4, 5, 6, 7]

Pass 6:

BEFORE PASS 7: [1, 2, 3, 4, 5, 6, 7]

AFTER PASS 7: [1, 2, 3, 4, 5, 6, 7]

Pass 7:

No Exchange

OUTPUT (sorted list): [1, 2, 3, 4, 5, 6, 7]

Algorithms Manual
for LCCS Teachers

 39

Quicksort

The quicksort algorithm was developed in 1962 by the famous British computer scientist,

Tony Hoare. As its name suggests, quicksort, is a very efficient sorting algorithm (considered

to be the fastest general purpose sorting algorithm). Quicksort belongs to a special class of

algorithms called divide-and-conquer algorithms and owes much of its efficiency to divide-

and-conquer as a general problem solving technique. (Merge sort is another popular

example of a divide-and-conquer sorting algorithm and later in this manual we will see how

binary search uses the divide-and-conquer technique is used to search for some arbitrary

value in a list of keys.)

The general principle of divide-and-conquer is to solve large problems by decomposing or

breaking them down into smaller sub-problems and solving these smaller problems

recursively, and then combining the results to form a complete solution.

In particular, the quicksort algorithm operates by dividing its list into two partitions around

some special value called a pivot. The lists are divided so that all the elements in the first

partition are less than or equal to the pivot and all the elements in the second partition are

greater than the pivot. By sorting the sub-lists using the exact same technique we eventually

reach the point where all elements are sorted.

The illustration below depicts an unsorted list with the last element chosen as an initial pivot.

The list is partitioned into two sub-lists ï a left sub-list and a right-sub-list. All the elements in

the left sub-list are less than the pivot and all the elements in the right-sub-list are greater

than the pivot. The algorithm proceeds by sorting the two sub-lists recursively.

The diagram depicts the initial pivot sorted with respect to the two sub-lists.

Algorithms Manual
for LCCS Teachers

 40

The steps of the quicksort algorithm can be expressed recursively as follows:

STEP 1. Choose the rightmost element in the list as the pivot

STEP 2. Create three empty lists called left_list , middle_list and right_list

STEP 3. for each element (key) in the list

- if element is < pivot add it to left_list

- if element is == pivot add it to middle _list

- if element is > pivot add it to right _list

STEP 4. The result is a list made up by applying steps 1-3 to left_list , followed by the

elements in middle _list , followed by applying steps 1-3 to right _list

Each list is partitioned until it contains just one element. These steps are illustrated in the

graphic below starting with an unsorted list [88, 46, 25, 11, 18, 12, 22] with 22 as the pivot.

Algorithms Manual
for LCCS Teachers

 41

A Python implementation of the quicksort algorithm is shown below:

def quick_sort(L):

 left_list = []

 middle_list = []

 right_list = []

 # Base case

 if len(L) <=1:

 return(L)

 # Set pivot to the last element in the list

 pivot = L[len(L) - 1]

 # Iterate through all elements (keys) in L

 for key in L:

 if key < pivot:

 left_list.append(key)

 elif key == pivot:

 middle_list.append(k ey)

 else:

 right_list.append(key)

 # Repeat the quicksort on the sub - lists and combine the results

 return quick_sort(left_list) + middle_list + quick_sort(right_list)

The crux of the algorithm is the partitioning process described in step 3 on the previous

page. This process is applied recursively to every left and right list i.e. quicksort the left sub-

list and quicksort the right sub-list, until the list is either empty or contains a single element.

(This is the base case used to end the recursion.) The final sorted list is assembled by

concatenating these base case lists together.

The algorithm can be tested using the following driver code:

Driver code ...

L = [88, 46, 25, 11, 18, 12, 22]

print("INPUT (initial list): ", L)

print("OUTPUT (sorted list): ", quick_sort(L))

When the program is run the following output is generated:

Algorithms Manual
for LCCS Teachers

 42

Notes:

1) The same functionality of the final line of code in the function (i.e. the return statement)

could be achieved by using the following three lines:

 sorted_left_lists = quick_sort(left_list)

 sorted_right_lists = quick_sort(right_list)

 return sorted_left_lists + middle_list + sorted_right_lists

2) The choice of pivot value is important and several different techniques are employed. In

some implementations the middle element is chosen as the pivot; in others it is the first

element; more advanced implementation select the pivot based on the arithmetic mean

of the list elements. The implementation shown here use the last element for the pivot.

A useful exercise is to consider how the performance of the algorithm would be impacted

if the pivot chosen was either the smallest or the largest element in the list.

3) This is not the most efficient implementation of the quicksort possible ï in fact, it is a very

inefficient version of quicksort (and is used here because of its simplicity relative to other

versions of the same algorithm). The inefficiency of this implementation is mainly down

to its reliance on additional external memory in order to store the left and right sub-lists.

For very large lists this becomes highly inefficient and even infeasible.

More efficient implementations do not require the use of additional memory and can

perform the sort using óin placeô memory. Such techniques work by exchanging elements

either side of the pivot that are found to be out of order relative to the pivot. For example,

elements that are larger than the pivot and to its left might be exchanged with elements

that are smaller than the pivot and to its right.

Algorithms Manual
for LCCS Teachers

 43

Exercise

Show, in the style of the quicksort tree diagram depicted earlier, how the following list of

integers could be sorted using a quicksort. The initial pivot is 32 - shown here in red.

Use the space below to explain in your own words how the quicksort algorithm works:

Algorithms Manual
for LCCS Teachers

 44

Linear Search

Letôs say we were asked the question: does the list below contain the number fourteen?

Without thinking twice, most of us would scan down through the list until we arrive at the

number fourteen. This intuitive response is called a linear search.

As we scan each element we perform a quick Boolean calculation. True or False - is the

element I am looking at equal to fourteen? If the result is true , we have found the required

element and the search can end; otherwise, if the result is False we automatically (and very

quickly) move on to the next element and repeat the Boolean calculation. This process

continues until either we find fourteen, or we reach the end of the list, by which time we can

conclude that the fourteen is not contained in the list.

The linear search algorithm is also called a sequential search. The sequential nature of the

process is illustrated below.

Is 15 the same as 14?

No.

Move to next element.

Is 4 the same as 14?

No.

Move to next element.

Is 41 == 14?

No.

Move to next element.

13 == 14?

No.

Next element

if 24 == 14:

 Found

Else:

 Next element

if 14 == 14:

 Found (so STOP!)

Else:

 Next element

Algorithms Manual
for LCCS Teachers

 45

Given a list of elements to search through (i.e. keys), and a target value to search for (i.e. an

argument), the steps of the linear (sequential) search algorithm can be expressed as follows:

1. Set a marker at the start of the list (called idx in the flowchart below)

2. Loop through steps σ χ as long as there are more numbers to compare

3. Compare the current element to the target value

4. If they match:

5. Return the value of the marker (idx)

6. If they are not equal:

7. Advance the marker right by one position (idx = idx +1)

8. Return the value of the marker (idx)

When the above algorithm is applied to find the number fourteen in the list show below it will

result in a value of 5. This is the index position of the target element in the list. (Recall, that a

list index is a zero-based positional offset.)

It is important to note that when the target value is not found in the list, the algorithm returns

the length of the list. For example, if the algorithm was applied to find the number 22 in the

above list the result will be 8 (because the length of this list is 8). When a target value is

found in a list, the search operation is said to be successful; otherwise unsuccessful.

Algorithms Manual
for LCCS Teachers

 46

Unsuccessful searches can be inferred by the calling code simply by comparing the returned

value to the list length. If the value returned by the linear search algorithm is equal to the list

length, then the code can deduce that the search was unsuccessful. (This is because list

lengths are one-based i.e. the length of a list is always one more than the index of the final

element.

In summary, the linear search algorithm works by starting at the first list element and working

its way from left-to-right, it compares each element with the target value until either a match

is found or the end of the list has been reached.

Some advantages and disadvantages of the linear search algorithm are as follows:

Advantages

1. Simplicity. The linear search is intuitive to most. It is relatively easy to understand and

implement.

2. It does not require the data to be stored in any particular order.

Disadvantage

The main disadvantage of the linear search algorithm lies in its lack of efficiency. The more

elements there are in a list the greater the amount of time it will take to search for any

specific element. In fact, the amount of time it takes to find a target value increases in

proportion to the number of elements in the list to search. Therefore, it will take ten times

longer to find an element in a list of 1,000 elements than it would for a list of 100 elements.

This is called linear time complexity, or O(n) for short.

One Python implementation of the linear search algorithm is shown in the code below.

def linear_search_v1(v, L):

 i = 0

 while i < len(L): # more?

 if L[i] == v: # match?

 return i # successful

 i = i + 1

 return i # unsuccessful

Algorithms Manual
for LCCS Teachers

 47

The function linear_search_v1 is defined to return the position of target value, v in list, L

if successful; otherwise the length of the list will be returned.

The algorithm can be tested using the following driver code ï the user is prompted to enter a

target value to search for. This is stored in the variable, argument.

Driver code ...

keys = [15, 4, 41, 13, 24, 14, 12, 21]

argument = int(input("Enter a target value: "))

result = linear_search_v1(argument, keys)

if (resu lt != len(keys)):

 print("%d found at position %d" %(argument, result))

else:

 print("%d not found. Return value is %d" %(argument, result))

Some sample runs are illustrated below:

A number of common variations on this implementation of the linear search algorithm exist.

Some of these variations are shown on the next page.

Algorithms Manual
for LCCS Teachers

 48

Version 2 of our linear search algorithm uses a Boolean variable called match to indicate

whether a match has been found (or not) by the algorithm. Initially, match is set to False

and the search continues as long as it remains False (i.e. not match will be True when

match is False) and there are more elements to compare (i.e. i < len(L)).

def linear_search_v2(v, L):

 i = 0

 match = False

 while not match and i < len(L):

 if L[i] == v: # match?

 match = True

 else:

 i = i + 1

 return i

This next version is a refinement on the one above. Basically, the logic for finding a match

and testing for the end of the list are combined into one Boolean expression which becomes

the loop guard. The need for an additional if - else test inside the loop is removed. The

elegance of this solution lies in the fact that the loop body needs only to contain a single

statement (i = i + 1) to advance to the next element.

def linear_search_v3(v, L):

 i = 0

 while i < len(L) and L[i] != v: # more? and match?

 i = i + 1

 return i

Version 4 of our algorithm shown below uses a for loop instead of a while loop. Notice

that len(L) is returned in this version to indicate that the search was unsuccessful.

def linear_search_v4(v, L):

 for i in range(len(L)):

 if L[i] == v:

 return i

 return len(L)

Algorithms Manual
for LCCS Teachers

 49

This next version ï perhaps the simplest of all ï uses a for loop and exploits the Python

óin ô operator.

def linear_search_v5(v, L):

 i = 0

 for element in L:

 if element == v:

 return i

 i = i + 1

 return len(L)

One interesting question worth exploring is:

How could the linear search algorithm be improved if it was known that the list to be

searched was already sorted?

Finally, it is worth noting linear search can be implemented recursively as follows:

def linear_search_v6(v, L, index=0) :

 if len(L) != 0 :

 if L[0] == v:

 return index

 r = linear_search_v6(v, L[1:], index+1)

 if r != - 1:

 return r

 return - 1

The sequence of lists passed into the

recursive function are stacked as show.

(This is based on the same example we

used earlier i.e. the target value is 14.)

The approach taken is to compare the

target value, v with first element in L. If

element is found at the first position

(L[0]), the index is returned.

Otherwise, recur for the remainder of

the list (L[1:]).

Algorithms Manual
for LCCS Teachers

 50

Exercise

Use the flowchart below to explain the process of finding the number 26 in the following list

of values:

Explain the meaning of more? in the above flowchart?

Explain the meaning of match? in the above flowchart?

Algorithms Manual
for LCCS Teachers

 51

Binary Search

Many people are familiar with the following (guessing) game.

Think of a number between 1 and 32. Now ask someone to guess the number you are

thinking of. In each turn, if the guess is not correct, tell your opponent whether the number is

too high or too low and ask them to try again. Keep going until he or she guesses your

number. How many guesses did it take? Go again. Play the game a few times taking note of

the number of guesses it took to find the secret number each time.

Can you explain why the maximum number of guesses it will take to correctly guess any

number you can think of between 1 and 32 would be 5? Or is it 6? What if the problem space

was doubled i.e. how many guesses would be needed to guarantee success for any number

between 1 and 64?

The strategy used by most in the above game is the same strategy employed by the binary

search algorithm. It is also the same strategy that people would have used to look up

telephone numbers from an alphabetically sorted list of names contained in what was called

a phone book back in the 20th century!

The binary search algorithm is an example of a divide-and-conquer algorithm. Divide-and-

conquer is problem solving technique which works by repeatedly reducing the problem

(divide) and then attempting to solve the problem (conquer) on the new problem space. In

this case the approach is to repeatedly divide the portion of the list that could contain the

item in two (i.e. half), until either the item is found or the list cannot be divided any further.

Instead of testing the list's first element, the binary search starts with the element in the

middle. If that element happens to contain the target value, then the search is over. If the

target value is less than the middle element of the list, we restrict the search to the first half

of the list; otherwise we search the second half of the list. Either way, half of the listôs

elements are eliminated from further searching on each iteration and the procedure is

repeated for the half of the list that potentially contains the value. This process continues

until the value being searched for is either found, or there are no more elements to test.

Donald Knuth is famously quoted as saying that an algorithm must be seen to believed, and

the best way to learn what an algorithm is all about is to try it. So letôs put Knuthôs advice to

practice and try the binary search algorithm.

Algorithms Manual
for LCCS Teachers

 52

Binary search pseudo-code

The pseudo-code for the binary search algorithm is as follows:

1. Set low = 0

2. Set high = length of list ï 1

3. Set mid = , rounded down to an integer

4. If the value at the mid position is the same as the target value

 Return mid

Else If the value at the mid position is less than the target value

Set low = mid + 1

Else If the value at the mid position is greater than the target value

Set high = mid - 1

5. As long as low doesnôt ócross overô high, go back to step 3 above

6. Return - 1

Letôs say we were tasked with applying the above algorithm to search for a target value of 28

in the following list of 16 values. Notice the index numbers from 0é15 are displayed over

each list element and, crucially, that the list has already been sorted.

In the first three steps of the algorithm we set the variables low , high and mid to 0, 15 and

7 respectively.

We now move to line 4 of the algorithm and since 14 is less than 28 we change the value of

low to mid+1 which is 8. The value of mid is computed to be ψ ρυȾς which is 11

(rounded down). Our state now look like this.

Algorithms Manual
for LCCS Teachers

 53

Since 25 is less than 28 we change the value of low again, this time to 12. The new value

for mid becomes 13 and the state can be visualised as follows:

Since the next comparison finds the target value, the algorithm can terminate successfully.

The use if trace tables can be very helpful in carrying out a binary search. A trace table for

this example might look as follows:

low mid high Rough work

0 7 15

L[7] is 14.

14 < 28 so move low to the right of mid and re-compute

mid

mid now becomes 11

8 11 15

L[11] is 25.

25 < 28 so move low to the right of mid and re-compute

mid

mid now becomes 13

12 13 15 L[11] is 28. Found!

The graphic below taken from geeksforgeeks.org is a nice illustration of how the binary

search finds the letter óJô in the list made up of the first 24 letters of the alphabet (óAô ï óXô)

Algorithms Manual
for LCCS Teachers

 54

A Python implementation of the binary search algorithm is shown below in the function

binary_search . The function is defined to return the position of some target value, v in a

list, L if successful; otherwise the length of the list will be returned.

def binary_search(v, L):

 low = 0

 high = len(L) - 1

 while (low <= high):

 mid = (low+high)//2

 if L[mid] == v:

 return mid

 elif L[mid] < v:

 low = mid + 1

 else:

 high = mid - 1

 return len(L)

The algorithm can be tested using the driver code shown below. The list, key s is first

initialised The user is then prompted to enter a target value to search for. This is stored in

the variable, argument .

Driver code ...

keys = [2, 4, 5, 7, 8, 9, 12, 14, 17, 19, 22, 25, 27, 28, 33, 37]

argument = int(input("Enter a target valu e: "))

result = binary_search(argument, keys)

if (result != len(keys)):

 print("%d found at position %d" %(argument, result))

else:

 print("%d not found. Return value is %d" %(argument, result))

Some sample runs are shown below.

Sample Run #1

Look for v , 28 in L

Sample Run #2

Look for v , 57 in L

Algorithms Manual
for LCCS Teachers

 55

Exercise

Given the list, L of sixteen integers shown below.

Describe the binary search path to search L for the following target values, v .

a) 19 b) 12 c) 15

A trace table with the initial values of low , mid and high already filled in is provided to get

you started.

low mid high Rough work

0 7 15

Algorithms Manual
for LCCS Teachers

 56

The main advantage and disadvantage of the binary search are as follows.

Advantage

The binary search is much a more efficient algorithm than the linear search. Every time it

makes a comparison and fails to find the desired item, it eliminates half of the remaining

portion of the array that must be searched. For example, consider an array with 1,000

elements. If the binary search fails to find an item on the first attempt, the number of

elements that remains to be searched is 500. If the item is not found on the second attempt,

the number of elements that remains to be searched is 250. This process continues until the

binary search has either located the desired item or determined that it is not in the array.

With 1,000 elements this takes no more than 10 comparisons. Compare this to the

performance of the linear search which for this scenario would need to make an average

number of 500, and a worst case of 1,000 comparisons to achieve the same result.

The following charts illustrate how the two search algorithms stack up against each other in

terms of performance. We are already aware that the performance of the linear search

increases in proportion to the number of items in the list to search. This linearity is clearly

shown by the blue line below. However, notice how the performance cost of the binary

search (shown by the brown line) barely rises above the x-axis using this scale.

The next graph shows the same data but this time the x-axis is scaled logarithmically. Again

the rise in cost of the binary search is barely noticeable as the size of the list grows. Notice,

however that the cost of the linear search appears to grow exponentially with respect to the

size of the list to search.

0

300

600

900

1200

1500

1800

2100

2400

0 300 600 900 1200 1500 1800 2100 2400

N
o

.
C

o
m

p
a

ri
so

n
s

N (The size of the list to search)

Binary vs. Linear Search

Linear Search

Algorithms Manual
for LCCS Teachers

 57

The final graphs shown below uses a log-log scale i.e. both x- and y-axes are scaled

logarithmically.

Here we can finally see the true logarithmic nature of the efficiency of the binary search

emerge. In particular, notice that the performance of the binary search is a logarithmic

function of the size of the problem space. Furthermore, the graph is evidence that binary

search is exponentially faster than its linear counterpart.

Disadvantage

The main drawback of the binary search is that the elements must be sorted beforehand.

0

300

600

900

1200

1500

1800

2100

2400

1 4 16 64 256 1024

N
o

.
C

o
m

p
a

ri
so

n
s

N (The size of the list to search)

Binary vs. Linear Search

Linear Search

1

4

16

64

256

1024

1 4 16 64 256 1024

N
o

.
C

o
m

p
a

ri
so

n
s

N (The size of the list to search)

Binary vs. Linear Search

Linear Search

Algorithms Manual
for LCCS Teachers

 58

Recursive Implementation

The code below shows a recursive implementation of the binary search. The function

searches for v in L between L[low] and L[high] .

def recursive_binary_search(v, L, low, high):

 # JE: Uncomment this next line to see the search space

 #print("v(%d) L(%s) low(%d) high(%d)" %(v, str(L[low:high+1]), low, high))

 if low > high:

 return len(L) # Not Found!

 mid = (low + high)//2

 if v == keys[mid]: # Found!

 # v is at mid in L so breakout of recursion

 return mid

 elif v < keys[mid]:

 # v is in the lower half of L so recur on L up to mid - 1

 return recursive_binary_search(v, L, low, mid - 1)

 # v is in the upper half of L so recur on L from mid+1

 return recursive_binary_search(v, L, mid+1, high)

As is the case with all recursive algorithms there is a base case and a reduction step. In the

base case the function returns without making a recursive call, and in the reduction step the

function makes a recursive call (i.e. it calls itself) and in so-doing moves one step closer to

the base case.

In this example, there are two base cases as follows:

1) The list is empty (this occurs when low > high) and

2) The middle element in the list is the value being searched for

The recursive call depends on the outcome of a comparison between the middle element in

the list being searched and the target value:

- if the target value is less than the middle element the function recurs on first (lower) half

of the list i.e. recursive_binary_search(v, L, low, mid - 1)

- if the target value is greater than the middle element the function recurs on second

(upper) half of the list i.e. recursive_binary_search(v, L, mid+1, high)

Algorithms Manual
for LCCS Teachers

 59

The recursive binary search algorithm can be tested using the driver code shown below. The

list, keys is first initialised The user is then prompted to enter a target value to search for.

This is stored in the variable, argument .

The initial call to the recursive function to search for argument in keys is highlighted in

bold. Note that the search is confined to work within the index range that is specified by the

last two arguments i.e. 0 and 15 in the case of this example.

Driver code ...

keys = [2, 4, 5, 7, 8, 9, 12, 14, 17, 19, 22, 25, 27, 28, 33, 37]

argument = int(input("Enter a target value: "))

result = recursive_binary_search(argument, keys, 0, len(keys) - 1)

if (result != len(keys)):

 print("%d found at position %d" %(argument, result))

else:

 print("%d not found. Return value is %d" %(argument, result))

Three separate sample runs to search for 14, 28 and 38 in keys are shown below. The

values of variables, v , L, low and high at each step of the recursion process are shown for

information purposes.

Algorithms Manual
for LCCS Teachers

 60

Activity #2: Developing an understanding of basic sorting algorithms

The main objective of this activity is that each participant gains a procedural understanding

of the simple (selection) sort, the insertion sort and the bubble sort algorithms.

For this activity participants are divided into groups (4 individuals per group is ideal) and

each group is assigned with an initial algorithm to study.

Stages 1 and 2 (15 minutes)

Everyone spends five minutes reading the assigned algorithm to themselves.

In the next five to ten minutes the algorithm is discussed in groups. The aim of this

discussion is to ensure that everyone has a concrete understanding of how the algorithm

works ï points of confusion are clarified and a strategy for explaining how the algorithm

works to others is agreed upon.

Stage 3 (10 minutes x 2)

Two people (pairs) from each group remain at their original table while the other pair move to

the another table (e.g. 1 ăĄ 4; 2 ăĄ 5; 3 ăĄ 6). The pairs explain/demonstrate their

algorithms to one another (no more than 5 minutes per pair!).

This is repeated once so that everyone has had an opportunity to learn each of the three

elementary sorting algorithms.

A detailed description of each algorithm is provided elsewhere in this manual.

Algorithms Manual
for LCCS Teachers

 61

Activity 2.1 The Simple (Selection) Sort

Letôs say weôre tasked with sorting the values of some list, L arranged as follows:

Place your index finger as a marker under the first element (i.e. the 9 of diamonds) and

proceed as follows:

- find the smallest value to the right of your marker and swap the two values

- move your marker (index finger) one place to the right

- repeat this process until the marker reaches the end of the list

Use the space below to trace the state of the list as you progress:

When you reach the end the list should be sorted as follows:

Algorithms Manual
for LCCS Teachers

 62

Use the space below to describe your own understanding of how the simple (selection) sort

algorithm works.

Algorithms Manual
for LCCS Teachers

 63

Activity 2.2 The Bubble Sort

The bubble sort repeatedly óbubblesô larger items towards the (sorted) end of the list. Given

an unsorted list, L as input:

The table below depicts the state of L at the end of each pass of the bubble sort algorithm.

After
Pass #

State of List (at the end of the pass)
Notes
(what exchanges take place?)

1

2

3

4

5

How many exchanges would take place if the initial list was:

a) already sorted, b) in reverse order?

a) Already Sorted e.g. [1, 2, 3, 4, 5]

b) Reverse Order e.g. [5, 4, 3, 2, 1]

Algorithms Manual
for LCCS Teachers

 64

Use the space below to explain how the bubble sort algorithm works:

Algorithms Manual
for LCCS Teachers

 65

Activity 2.3 The Insertion Sort

In any list the first item is always considered sorted with respect to all the items to its left.

Then working from left to right each subsequent item is inserted into its correct place with

respect to the previously sorted items.

Follow the instructions below to sort the following list:

Place your index finger as a marker under the first item in the unsorted list (i.e. in this case

the first selected item will be 7) and proceed as follows:

- insert the selected item into its correct place within the sorted list (to the left). This is

done by repeatedly swapping back (leftwards) with all larger neighbours to the left

- move your marker (index finger) one place to the right (the next selected item in this

example will be 3)

- repeat this process until the marker reaches the end of the list

Use the space below to trace the state of the list at the end of each pass:

The final sorted list will look like this:

Algorithms Manual
for LCCS Teachers

 66

Use the space below to explain how the insertion sort algorithm works:

Algorithms Manual
for LCCS Teachers

 67

Section 3 - Analysis of Algorithms

Introduction to Algorithmic Efficiency (Complexity)

Now that we have developed an understanding of how some search/sort algorithms work,

the next logical step is to examine just how well they work. In this section we will analyse the

performance of algorithms. In computer science this is often referred to as algorithmic

efficiency or complexity. Two common measures of algorithmic efficiency are space and time

ï the former provides an indication of the demands an algorithm places on memory in terms

of space requirements, while the later focuses on the time requirements of an algorithm. For

the most part, we will be confining the remainder of our discussion to time complexity.

The study of time complexity provides us with a framework which can be used to compare

algorithms and understand how well they perform in relation to one another. Before we can

begin to compare algorithms in terms of their performance however, we must first devise (or

at least agree upon) some system that is both impartial and reliable.

On the surface it might seem fair and make sense to simply time how long it takes an

algorithm to run in minutes and seconds (or milliseconds) and use this as a measure of

performance. As it turns out however this would be neither fair nor reliable. This is because a

computerôs performance can depend on a variety of different factors (e.g. processor clock

speed, word size, bus width and amount of available memory), and so, an algorithm that

takes 1000 milliseconds to run on one computer might run in just 10 milliseconds on another

(one hundred times faster!). In fact, depending on the processor load, the time taken to run

an algorithm could potentially vary significantly from run to run on the same processor.

Furthermore, the running time of an algorithm is likely to vary in accordance with the size of

its input. Intuitively it is easy to understand that a particular sorting algorithm will sort 1,000

integers must faster than it will sort 1,000,000 integers. However, as we will soon learn to

appreciate (hopefully!), it is the specific techniques and nuances employed by algorithms

that have a much greater bearing on performance than the size of the input.

And then there are questions such as what is the fastest time an algorithm can run in i.e.

what is the best case performance? Or is there an average performance time for a particular

algorithm? What about a worst case?

Algorithms Manual
for LCCS Teachers

 68

As it turns out it is this final question (regarding worst case) that computer scientists are

most interested in. The reason for this is that a worst case running time gives users a bottom

line guarantee that an algorithm will finish at worst within a particular timeframe, and for this

reason worst case scenario is used as a metric for comparing algorithms.

From the preceding section is should be evident that something other than exact running as

a metric for time complexity is needed. That something is Big-O.

Big O

Big O is a notation used in Computer Science to describe the worst case running time (or

space requirements) of an algorithm in terms of the size of its input usually denoted by ὲ.

By using Big-O notation, algorithms can be broadly classified into one of the groups

described below. The running time (or space requirements) of algorithms within the same

classification is of the same order of growth with respect to ὲ.

The imprecise nature of Big-O is important to understand from the outset. For example, an

algorithm found to take ςὲ ὲ τὲ σ time to complete would be described as having a

complexity of ὕὲ . This is because the higher order term will dominate the other terms for

sufficiently large values of ὲ. The lower order terms and constant value can therefore be

ignored. Big-O provides an order of magnitude and can be thought of as a qualitative

descriptor as much as a quantitative one.

A description and examples of some common Big-O values is now presented.

O(1)

An algorithm described in this manner will always run within some constant time (sometimes

called bounded time) regardless of the size of the input. Such algorithms are said to take

óorder of 1ô, or O(1) time to complete.

While it is possible that two different O(1) algorithms may take significantly different times to

complete this does not matter. The important point is that we know that O(1) algorithms will

complete within some constant time.

To take an analogy, letôs say itôs the weekend and you were preparing to do some serious

study but before you get started you first need to clear your room/desk. The time required to

Algorithms Manual
for LCCS Teachers

 69

do this work doesnôt depend in any way on the number of subjects you intend to study. It will

be completed within some constant amount of time regardless of whether you will study two

or ten subjects.

O(n)

If the length of time it takes to run an algorithm increases in proportion to the size of the input

the algorithm is said to run in linear time. Such algorithms have an O(n) complexity.

The linear (sequential) search algorithm used to find some target value (argument) in a list

that contains ὲ values is a classic example of an ὕὲ algorithm. This is because in the

worst case scenario every element in the list will have to be examined in order to find the

target value. These algorithms are characterised by the following loop structure.

for i in range(n):

 print(i) # this line will be executed n times

Once again it is important to remember that the absolute time is not the important factor. On

average it will take much less time to search for a value in shorter lists than longer ones.

Recall, Big-O provides us with an objective classification scheme which can be used to

compare algorithms based on worst case scenarios.

To continue with our earlier analogy ï let n be the number of subjects you are going to study

and let us say that you had decided to allocate a fixed amount of time to each subject. It

makes sense therefore that the more subjects you study the longer it will take to finish your

study. Twice as many subjects will require twice the amount of time.

O(ὲ)

Now letôs say that you decided to use a slightly different approach to your study. Instead of

allocating the same fixed amount of time to each subject you decide to allocate fixed units of

time to reading individual pages of notes. You start by reading one page for the first subject,

two for the second, three for the third and so on. By the time you have reached your nth

subject you will need to read ὲ pages of notes. The amount of time it takes to complete your

study in this case is known as quadratic time and is written as O(ὲ).

Algorithms of this type are characterised by loops nested to one level. For each of the ὲ

iterations carried out by the outer loop, the inner loop will perform ὲ iterations of its own. This

Algorithms Manual
for LCCS Teachers

 70

is illustrated in the snippet of Python code below in which the print statement appears within

a nested for loop and will be executed ὲ times.

for i in range(n):

 for j in range(n):

 print(i, j) # this line will be executed n squared times

The three elementary sort algorithms ï selection sort, insertion sort and bubble sort ï are all

examples of algorithms whose time complexity is quadratic. Furthermore, it is noteworthy

that algorithms in this class are impractical to use when it comes to dealing with large

volumes of data. Just think about it ï if the size of a list doubles it would take four times

longer to sort; increasing the size of a list threefold will result in a nine-fold increase in time.

Not to labour the point too much, it would take 100 times longer to sort a list of 1000 items

than it would to take to sort a list just 10 times smaller. Quadratic time algorithms are simply

unsustainable.

ὕÌÏÇὲ

These class of algorithms are said to be logarithmic. For algorithms that have logarithmic

time complexity it means that as the value n increases, the time complexity of your program

increases by a logarithmic factor.

Such algorithms are characterised by cutting the size of the input in half in each step as it

moves towards a solution. Take for example the following analysis of a binary search:

List Size (n)
Maximum number
of comparisons (c)

1 1

2 2

4 3

8 4

16 5

32 6

etc. etc.

As can be seen from the table above the maximum number of comparisons (steps) the

binary search algorithm needs to perform in order to find some target value just increases by

one each time the size of the input list is doubled.

Algorithms Manual
for LCCS Teachers

 71

The relationship between the size of the input (ὲ) and the maximum number of comparisons

(ὧ) required is given by:

ὲ ς

Therefore,

ὧ ÌÏÇὲ ρ

So binary search has ὕÌÏÇὲ time complexity which is a very impressive and desirable

feature for any algorithm to have. More importantly however is the fact that we can use this

to calculate the maximum number of comparisons it will take to search a list of any size i.e.

we can guarantee an upper bound. For example a list with ς ρ ὦὭὰὰὭέὲ elements will take

no more than 31 comparisons. This is very useful information for software designers to have

at hand when they need to choose the most appropriate algorithm for the system they are

working on.

ὕὲ ÌÏÇὲ

When it comes to analysing worst case time complexity of algorithms that sort by using a

series of head-to-head comparisons, it is a proven fact that the best we can hope to achieve

is ὕὲ ÌÏÇὲ, also called ñlinearithmicò time. ñLinearithmicò complexity lies somewhere

between linear and quadratic. It is not an understatement to say that algorithms with this

class of time complexity result in seismic improvements in performance.

ñLinearithmicò algorithms are characterised by an approach to problem solving known as

divide-and-conquer. Depending on the particular algorithm there will be ὲ divisions and each

division will take log ὲ steps to conquer or vice versa.

Two examples of algorithms that fall into this class of time complexity are quicksort and

merge sort.

Intractable Problems

Finally, it is worth noting that algorithms can have time complexities that are exponential,

ὕς) and even worse, factorial, ὕὲȦ. The solution to the Travelling Salesman Problem is

an example of a factorial time algorithm. Algorithms of this nature are said to be intractable

as their running time makes them infeasible even for very small values of n. (This is

evidenced by the values in the rightmost two columns in the table at the top of the next

page.)

Algorithms Manual
for LCCS Teachers

 72

Summary Graphs and Tables

The growth rates in computation time for the common time complexity functions discussed in

the preceding section are depicted in tabular and graphical8 format below.

N Constant Linear Quadratic Logarithmic Linearithmic Exponential Factorial

1 1 1 1 1 1 2 1

2 1 2 4 1 2 4 2

4 1 4 16 2 8 16 24

8 1 8 64 3 24 256 40320

16 1 16 256 4 64 65536 2.09228E+13

32 1 32 1024 5 160 4294967296 2.63131E+35

64 1 64 4096 6 384 1.84467E+19 1.26887E+89

128 1 128 16384 7 896 3.40282E+38 3.8562E+215

8 Source: Data Structures and Algorithms in Python (Goorich et. al., Page 122)

