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Section 1 

Introduction to Algorithms 

 

In recent years the word algorithm has been slowly creeping out from behind the walls of 

high-tech companies and the computer science lecture halls of universities and making its 

way into the public gallery modern society. And the reason for this is simple: algorithms are 

all around us. They have evolved to shape the way we live our daily lives, the way we think, 

and perhaps most significantly, who we are. But what exactly is an algorithm? 

 

An algorithm is a set of rules for getting a specific output from a specific input. Each step 

must be so precisely defined that it can be translated into computer language and 

executed by machine 

Donald Knuth (1977) 

 

It is difficult to think of any aspect of modern society that remains untouched by algorithms ï 

application areas include: arts, entertainment, education, banking, finance, insurance, 

healthcare, medicine, media, social media, travel, tourism, crime, justice, transport, politics, 

public services, communications, retail, security, manufacturing, military and much, much, 

more. Sales, marketing, sports, games, astronomy, exploration, science and technology, 

construction, engineering, agriculture, food, research and development. The list is endless. 

There are algorithms to recommend our next purchases, the next book to read, the next 

song to listen to, the next YouTube video to watch ï algorithms to maintain playlists, find the 

perfect partner, schedule our busy lives, pay for and deliver our shopping and so on ad 

infinitum.  

 

The ubiquitous nature of algorithms and their influence on modern life should be patently 

clear. And for this reason alone the benefits of having a general understanding of the way 

they operate should also be clear. Simply put, life can be made easier when one has some 

level of understanding about the algorithms that are used to drive and support it. 

 

When it comes to the study of algorithms (as is the case with Leaving Certificate Computer 

Science) their importance takes on an even greater significance. The study of algorithms 

enables us to provide opportunities for students to ask questions that are fundamental to 

computer science. Questions such as é 

Á What is computable?  
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Á Does an algorithm guarantee a correct solution?  

Á How optimal is this solution?  

Á What is the worst case time complexity?  

 

 

According to Knuth1 an algorithm has the following five important features: 

 

1. Finiteness: An algorithm must always terminate after a finite number of steps. A 

procedure that has all the characteristics of an algorithm except that it possibly lacks 

finiteness may be called a computational method e.g. reactive processes 

2. Definiteness: Each step must be precisely defined; the actions to be carried out must be 

rigorously and unambiguously specified for each case. Algorithms that are expressed 

using natural languages give rise to the possibility of ambiguity. To get around this 

difficulty, formally defined programming languages or computer languages are designed 

for specifying algorithms. An expression of a computational method in a computer 

language is called a program. 

3. Input: An algorithm has zero or more inputs, taken from a specified set of objects: 

quantities that are given to it initially before the algorithm begins, or dynamically as the 

algorithm runs. 

4. Output: An algorithm has one or more outputs, which have a specified relation to the 

inputs. 

5. Effectiveness: All operations to be performed must be sufficiently basic that they can be 

done exactly and in finite length. 

 

A less formal definition of óalgorithmô is a step-by-step procedure for solving a problem or 

accomplishing some end.2 According to this definition ordinary everyday instructions such as 

those found in recipe books or any set of instructions (e.g. making a cup of coffee, furniture 

flat-pack assembly instructions, Lego, changing the oil in a car etc.) could be called 

algorithms. No computation necessary - what do you think? This definition tells us that 

basically, if you can clearly describe how to do something, then you can make an algorithm 

for it. 

 

It is worth noting that there is a big difference between inventing an algorithm and using it. 

Inventing an algorithm can be very difficult ï there can be multiple solutions to the same 

                                                           
1 Source: Knuth, D The Art of Computer Programming (Vol. 1, Fundamental Algorithms, 3rd ed.) 
2 https://www.merriam-webster.com/dictionary/algorithm 

https://www.merriam-webster.com/dictionary/algorithm
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problem - and the use of computational thinking skills is essential, whereas using an 

algorithm is just a matter of following the algorithmôs instructions.  

 

V Algorithms are way of capturing intelligence and sharing it with others 

V They provide general solutions to problems (but some problems are so hard that they 

cannot be solved by algorithms e.g. The Halting Problem) 

V They can be expressed in a variety of different ways ï programs, pseudo-code, 

flowcharts etc. 

V Common elements of algorithms include data acquisition, computation, sequence, 

selection, iteration and a means to report the output. 

V There is a close relationship between algorithms and data structures. 

V The essential features of all algorithms are correctness and effectiveness 

 

 

Rule Based Algorithms vs. Machine Learning Algorithms  

The distinction between rule-based algorithms and AI/machine learning algorithms is very 

important and therefore worth discussing. 

 

Rule based algorithms are the traditional algorithms that are written by humans typically 

using programming constructs such as sequence, selection and iteration. These are the 

classic algorithms that can be debugged and tested, and behave in a deterministic fashion. 

We will see later that these type of algorithms can be studied, verified and rigorously 

analysed.  

 

Although many rule-based algorithms pre-date computer algorithms (Euclidôs algorithm for 

finding the greatest common divisor of two numbers and The Babylonian square-root 

algorithm (sometimes called Heroôs method) are just two examples), there can be little doubt 

that since the 1950s and the rise in popularity of computers there has been somewhat of an 

explosion of interest and the development of new rule-based algorithms. This is largely down 

to the fact that because of their speed and reliability, computers are an ideal tool for running 

algorithms.  

 

In the next section we will be taking a detailed look at a variety of searching and sorting 

algorithms (i.e. linear and binary searches, simple (selection) sort, insertion sort, bubble sort 

and quicksort algorithms) but there are quite literally thousands of other rule based 

algorithms too. Some classic examples include Googleôs Page Rank algorithm (written by 
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Larry Page and Sergey Brin), Dijkstraôs shortest path algorithm, Cooley-Tukey algorithm 

(used to break down signals into frequencies), Mooreôs Algorithm (used for scheduling and 

resource allocation) and a wide variety of Greedy (heuristic) algorithms just to name a few.  

 

All operating systems and the vast majority of application software are built using many of 

these rule-based algorithms. Common examples include word-processing, spreadsheet and 

database packages, web browsers, graphic/multimedia systems. Other business examples 

include Customer Relationship Management (CRM) systems, Point-Of-Sale (POS) and stock 

control systems, Automated Teller Machine (ATM) systems, sales, purchasing, invoicing and 

accounting systems. Online systems we use to communicate with each other, purchase 

goods, play games, book cinema or concert tickets, holidays, taxis, flights, hotels, and 

stream movies and music to our devices are all built from rule-based algorithms. 

 

Machine learning algorithms (and AI) differ from rule-based algorithms in a number of 

respects. These type of algorithms are designed so that they can be ótrainedô over time using 

a combination of very large volumes of data and human input. These inputs are used by the 

algorithms to build large and complex mathematical models which are then used to make 

inferences and predictions. Unlike rule-based algorithms, machine learning algorithms are 

characterised by a statistical randomness that gives rise to non-deterministic (stochastic) 

behaviours.  

 

Machine learning algorithms (and AI) were discussed earlier in the section on unconscious 

bias and are the subject of much debate at the moment. It is probably fair to claim that the 

recent surge in popularity of machine-learning algorithms is being met by many people with 

a mix of excitement and a certain degree of trepidation ï excitement at the positive potential 

they hold for society, but trepidation caused by the inability in certain cases by their 

designers to explain their behaviour.  

 

For an excellent introduction to algorithms watch the BBC4 documentary, The Secret 

Rules of Modern Living3 produced and directed by David Briggs and presented by 

Professor Marcus du Sautoy. A nice worksheet to accompany the video is available at the 

link referenced below. 4  

  

                                                           
3 https://www.youtube.com/watch?v=kiFfp-HAu64. 
4 https://csilvestriblog.files.wordpress.com/2015/09/the-secret-rules-of-modern-living-algorithms.pdf 

https://www.youtube.com/watch?v=kiFfp-HAu64
https://csilvestriblog.files.wordpress.com/2015/09/the-secret-rules-of-modern-living-algorithms.pdf
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Activity #1: Introduction to Algorithms 

Read the scenario below carefully and then watch the video The Secret Rules of Modern 

Living, Marcus Du Sautoy (https://www.youtube.com/watch?v=kiFfp-HAu64) from 23:44 to 

26:53 

 

The Stable Marriage Problem (David Gale and Lloyd Shapely, 1962 and later Alvin Roth) 

 

Suppose you had a group of men and a group of women who wanted to get married. The 

goal is to find stable matches between two sets of people who have different preferences 

and opinions on who is their best match. 

 

The central concept is that the matches should be stable: There should be no two people 

who prefer each other to the partners they actually got e.g. an unstable match would be if 

Mary and John like each other better than their partners. The problem is to develop a 

formula to pair everyone off as happily as possible. 

 
 

Sometimes solutions to problems can have varied (and unexpected) applications.  

In what other contexts do you think the Gale-Shapley algorithm could be applied? 

 

 

 

  

https://www.youtube.com/watch?v=kiFfp-HAu64
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Discussion 

It is interesting to note how algorithmic solution(s) to some famous (and not so famous) 

problems have found applications in entirely different (and unexpected) contexts. 

 

The original problem context for the Gale-Shapley algorithm was college admissions i.e. how 

to match students to colleges so that everyone got a place, but more importantly were happy 

even if they didnôt get their first choice. However, it is quite likely that some of the following 

applications of solutions to the Stable Marriage Problem were not anticipated in 1962 when 

Gale-Shapley first posed the problem and invented its solution: 

 

- As recently as 2004 Alvin Roth adapted the Gale-Shapley algorithm to help transplant 

patients find donors (it is estimated that thousands of lives being saved as a result5). 

Both Shapley and Roth received the Nobel Prize in 2012 for this work. (David Gale 

passed away in 2008) 

- In the 1990s, Roth, with backing from the National Science Foundation, began looking at 

the National Residency Match Program (NRMP), a system that assigns new doctors to 

hospitals around the country (USA). The NRMP was struggling because new doctors 

and hospitals were often both unsatisfied with its assignments. Roth used Gale and 

Shapelyôs work to reshape the NRMP matching algorithm so that it produced matches 

that were more stable. 

- Another application was found in assigning (client) users to servers in a large distributed 

Internet service.  

- General solutions to the SMP are also applied in the areas of in economics, stock 

markets and marketing recommendation systems (basically any scenario which involves 

supply and demand or matching sellers to buyers). 

 

Can you think of any other contexts where solutions to the Stable Marriage Problem 

could be applied? What about love? 

 

 

 

  

                                                           
5 https://medium.com/@UofCalifornia/how-a-matchmaking-algorithm-saved-lives-2a65ac448698 

http://www.goldengooseaward.org/awardees/zfh0utmzft7uewzc3lscuvdp21ogw2
http://www.nobelprize.org/nobel_prizes/economic-sciences/laureates/2012/popular-economicsciences2012.pdf
https://medium.com/@UofCalifornia/how-a-matchmaking-algorithm-saved-lives-2a65ac448698
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Further Work  

This work can be carried out in your own time following the workshop. 

Consider potential areas of application for solutions to the following problems/scenarios. 

 

 

Scenario 1: The Secretary Problem (aka The Optimal Stopping Problem) 

 

Suppose that you are in an ice cream parlour with a hundred different flavours of ice 

cream: chocolate-mint, peanut butter, pepper, coffee-chocolate-garlic, and many more! 

Because you do not know any of these strange combinations, the friendly ice cream 

vendor allows you to taste some! You can try a little spoon of a kind of ice cream and have 

to decide whether you want a full serving or want to eat something else. Unspoken rules 

of politeness say that if you have declined a flavour to try a new one, you can never 

choose that previous flavour again. Which strategy will lead to the best bowl of ice cream? 

 

 
"  
 

Scenario 2: Two Machine Scheduling 

 

When you wash your clothes they have to pass through the washer and the dryer in 

sequence, and different loads will take different amounts of time in each. A heavily soiled 

load might take longer to wash but the usual time to dry; a large load may take the usual 

time to wash but a longer time to dry. If you have several loads of laundry to do on the 

same day, whatôs the best way to do them? 

 

(This problem originated from a mathematician called Selmar Johnson. The scenario 
Johnson examined was bookbinding, where each book needs to be printed on one 
machine and then bound on another. Problem is to minimise the total time for the two 
machines to complete all their jobs.) 
 

 
"  
 

Scenario 3: The Elevator Algorithm (aka Karpôs algorithm or Knuthôs One Tape Sort6) 

 

How would you design an elevator algorithm that is fair, both to its passengers and the 

waiting public? 

                                                           
6 Knuth, Donald, The Art Of Computer Programming. Vol 3, pp 357-360. òOne tape sortingò 
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Scenario 4: The Travelling Salesman Problem (TSP) 

 

Given a list of cities and the distances between each pair of cities, what is the shortest 

possible route that visits each city once, and only once, and returns to the origin city? 

 

 
"  
 

Scenario 5: The Bridges of Königsberg 

 

The city of Königsberg in Prussia (now Kaliningrad, Russia) was set on both sides of the 

Pregel River, and included two large islands which were connected to each other, or to the 

two mainland portions of the city, by seven bridges. Can you devise a walk through the 

city that would cross each of those bridges once and only once? 

 

Solutions involving either of the following are unacceptable: 

- reaching an island or mainland bank other than via one of the bridges, or 

- accessing any bridge without crossing to its other end 

 

 

"  

 

There are many more interesting scenarios/problems to those presented on the previous 

pages. You are encouraged to research some for yourself and use the space provided on 

the next page to start recording your findings. Here are some ideas to get you started:  

 

- Discuss methods for pairing socks! 

- What about washing dishes? 

- What is The Dining Philosopher Problem? 

- Discuss the nature of the following two scenarios (are they the same?): 

1) Suppose we have n tasks to complete, each with a time estimate ï how can we delegate 

the tasks to two people as evenly as possible? 

2) Suppose you needed to divide a large number or assorted crates into two equal weight 

groups? 

 

Browse to https://classicproblems.com/ to read more interesting Computer Science problems 

and bolster your knowledge of algorithms in the process.  

https://en.wikipedia.org/wiki/K%C3%B6nigsberg
https://en.wikipedia.org/wiki/K%C3%B6nigsberg
https://en.wikipedia.org/wiki/Kingdom_of_Prussia
https://en.wikipedia.org/wiki/Kaliningrad
https://en.wikipedia.org/wiki/Russia
https://en.wikipedia.org/wiki/Pregolya
https://classicproblems.com/
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Section 2 

Searching and Sorting Algorithms 

 

Introduction 

Sorting and searching are at the very heart of what computers do. Most of us can think of 

situations from our past where we needed to search for something e.g. a name in a contact 

list, or a song from a playlist. Maybe even an email or a book from a library or a product from 

an online catalogue. How many times do we use a search engine in a single day?  

 

In todayôs digital world searching and sorting algorithms are crucial for efficient retrieval and 

processing of large volumes of data. Without question they are among the most important 

and the most frequently used algorithms in computer science. In fact, it is estimated that 

over 25% of computing time is spent on sorting with some installations spending more than 

50% of their time sorting7. From an environmental perspective that can add up to a lot of 

energy and greenhouse gases. 

 

Many of us will appreciate that there are classes of algorithms that, for a given input, will 

compute all possible outputs. Sometimes the amount of output can run well beyond orders of 

magnitude that humans are capable of dealing with. Consider as examples algorithms for 

finding the shortest possible route between two points or an algorithm to compute all the 

possible winning moves from this point in a chess game. Other classes of algorithms work 

by processing very large amounts of input data just to generate a relatively small amount of 

output. For example, your favourite social media application might use an algorithm which 

trawls through its database of millions (and even billions!) of registered users just so that it 

can present them to you as suggested ófriendsô to connect with or to follow. The presentation 

of the results of these algorithms in sorted order is often as important as the underlying 

algorithm that was used to gather them in the first place.  

 

Sorting makes it possible to view the same underlying data in multiple ways. For example, 

products may be presented to an online user in order of price or some other metric such as 

rating. A football league table sorted in alphabetic order by team would probably look very 

different to the same table sorted on points. It is a combination of the frequency of the types 

of computations referred to above, and the sheer volume of the data that make sorting and 

searching algorithms so important.  

                                                           
7 Source: Fundamentals of Data Structures in Pascal (Horowitz and Shani, Pg. 335) 
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Finally, and also very importantly, as we will see later when we study the binary search 

algorithm, sorting makes it possible to search very large data sets in very little time. They 

also enable easy detection of duplicate values and facilitate the comparison of lists. 

 

Research Exercise 

This exercise can be carried out in your own time following the workshop. 
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So, what do we mean by sorting? 
 

An algorithm that maps the following input/output pair is called a sorting algorithm: 

 

Input:  A list (aka array), ὒ, that contains ὲ orderable elements (often called keys): 

ὒπȟρȟȢȢȢ  ȟὲ ρ]. 

 

Output: A sorted permutation of ὒ such that, 

ὒπ ὒρ Ễ ὒὲ ρ. 

 

For example, ὥȟὦȟὧȟὨ is sorted alphabetically, ρȟςȟσȟτȟυ is a list of integers sorted in 

increasing order, and υȟτȟσȟςȟρ is a list of integers sorted in decreasing order.  

 

By convention, empty lists and lists consisting of only one element (singletons) are always 

sorted. This is a key point for the base case of many sorting algorithms. 

 

When the (sorted) output occupies the same memory as was used to hold the original 

(unsorted) input the sorting is said to have been done in place. This is a desirable feature for 

sorting algorithms to have because it means they have little or no additional space 

requirements (on top of the size of the list that is being sorted). 

 

What is searching? 
 

An algorithm that maps the following input/output pair is called a search algorithm: 

 

Input: An list, ὒ, that contains ὲ orderable elements (often called keys) ὒπȟρȟȢȢȢ  ȟὲ ρ] and 

some target value commonly referred to as an argument. 

 

Output: If the argument is found in L it is conventional to return its zero-based positional 

offset (i.e. the index) and if the argument is not found some implementations return the 

length of the list while others return ρ. (Either of these two outputs can be used to indicate 

that the argument doesnôt exist in L.) 

 

For example, a search to find argument Ȭὧȭ in the list L, Ὠȟὥȟὧȟὦ would return ς and a search 

to find argument Ȭᾀȭ (or any other value not on L) in the same list would return either τ or ρ. 
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For any given problem, it is quite possible that there is more than one algorithm that 

represents a correct solution. Two good examples of this are the problems of searching 

sorting. Dozens of different algorithms have been written to solve this problem. LCCS names 

these six.  

 

 

 

For the purpose of this workshop we will confine our attention to searching and sorting 

numeric data (as opposed to alphanumeric or data of any other datatype) that are stored 

using the list data structure (aka an array).  

 

When we come to look at the implementation of some of these algorithms we will find it is 

necessary to have a working knowledge of lists i.e. indexing and traversals, the use of 

comparison operators (the law of trichotomy and the law of transitivity), and how to 

swap/exchange values. It will also be necessary to have a knowledge of iteration and useful 

to have an understanding of recursion. 
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List Traversal and The Swap Operation 

 

 
 

 
 

A more detailed description of the various search and sort algorithms is presented in the 

following pages. (In the workshop we skip directly to Activity # 2 on page 60.) 
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A Simple Sort Algorithm 

We will start our discussion of sort algorithms with this presentation of what is perhaps the 

simplest sort of all. 

 

Letôs consider the process of sorting the seven unsorted cards shown here. 

 

 

The desired output is: 

 

 

One approach is to start by finding the smallest card in the unsorted list and moving it into a 

new list. The smallest card is 4 and this is moved to the new list as illustrated. 

Original (Unsorted) List Ą 

 

New (Sorted) List Ą 

 

We proceed by moving the next smallest card (i.e. 5) from the original list and adding it to 

the end of the new list. 

Original (Unsorted) List Ą 

 

New (Sorted) List Ą 

 

This process of finding the smallest card from the unsorted list and moving it to the end of 

the sorted list continues until there are no cards left in the original list and all the cards are 

sorted.   
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In general, the simple sort works by repeatedly selecting the smallest item from an unsorted 

list and moving it to a second list. Once all the items have been removed from the unsorted 

list, the second list will contain the items in sorted order. 

 

The sequence of steps is as follows: 

 

1. Initialise an unsorted list 

2. Initialise an empty sorted list 

3. Repeat as long as there are items in the unsorted list 

4.  Find the smallest item 

5.  Move the smallest item to the sorted list 

6. Stop 

 

These steps can be translated into the following Python code.  

 

# A Very Simple Sort v1  

 

unsorted_list = [9, 6, 10, 4, 8, 5, 7] # the list to be sorted  

sorted_list = [] # the initial (empty) sorted list  

 

# Loop over every element in the unsorted list  

for i in range(len(unsorted_list)):  

    smallest = min(unsorted_list) # min returns the smallest  

    so rted_list.append(smallest) # append  the smallest to the sorted list  

    unsorted_list.remove(smallest) # remove the smallest from unsorted_ list  

 

It is important to note that the above code exploits the min built-in function to find the 

smallest item. The actual algorithm for min  involves comparing each element to every other 

element in the list. 

 

A note on performance 

The above technique it is not considered to be a very efficient algorithm. The main reason 

for this is that it requires twice as much memory as the size of the original sorted list i.e. in 

order to sort a list of size N, the algorithm the space requirements are 2N. This becomes 

impractical when the number of items in the list becomes large. 
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The Simple (Selection) Sort 

The selection sort algorithm is a variation of the algorithm just presented with one important 

difference ï the items are sorted óin placeô i.e. without the need for a second list.  

 

The algorithm maintains a marker such that at all times: 

- all items to the right of the marker are unsorted 

- all items to the left of the marker have been sorted. 

 

This example shows an unsorted list with the marker in its initial position pointing to the first 

item in the list. 

 

 

The algorithm proceeds by finding the smallest item to the right of the marker ï in this case 4 

ï and then swapping this item with the item at the marker. The marker is then advanced to 

the next position as illustrated. 

 

 

In the next pass the smallest item (to right of the marker, i.e.5) is swapped with the item 

pointed to by the marker (i.e. 6). This leaves the list looking like this: 
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This process continues in a systematic fashion until all the items in the list have been 

processed. 

 

6 has just been swapped with 10. The next swap will be 9 and 7. 

 

9 has just been swapped with 7 and the marker is advanced to 8 ï since no item to the right 

of the marker is smaller than 8 the list will remain unchanged. 

 

The list remains unchanged and the marker is advanced to 10. 

 

9 is swapped with 10 and the list is sorted. 
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The steps in the selection sort algorithm are as follows: 

 

1. Initialise an unsorted list 

2. Initialise a marker 

3. Loop across every list item 

4.  Find the minimum item to the right of the marker 

5.  Swap this item with the item at the marker 

6.  Advance the marker to the right one position 

7. Stop 

 

These steps are annotated in the Python implementation shown here. 

 

# Simple ( Selection )  Sort v1  

 

# 1. Initialise an unsorted list  

L = [9, 6, 10, 4, 8, 5, 7]  

# 2. Initialise a marker  

marker = 0  

 

# 3. Traverse through all list items  

while marker < len( L):  

    # 4. Find the minimum item  to the right of the marker  

    index_of_min = marker  

    for j in range(marker+1, len( L)):  

        if L[index_of_min] > L[j]:  

            index_of_min = j  

 

    # 5. Exchange the smallest item with the item at the marker  

    temp = L[marker] # save the item at the marker  

    L[marker] = L[index_of_min] # copy 1  

    L[index_of_min] = temp # copy 2  

     

    # 6. Advance the marker to the right by 1 position  

    marker = marker+1  

 

# 7. Stop  

 

- The values to be sorted are stored in a list called L. 

- The variable marker  is used to store the index that will contain the next item to be 

sorted. All items to the left of marker are sorted and all items to the right of marker are 

yet to be processed. 
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- The variable index_of_min  is the index of the smallest item to the right of the marker. 

The item at this position will be swapped with the item at the marker ï this is the heart of 

the algorithm. 

 

The illustration below depicts the changing values of marker  and index_of_min  as the 

algorithm sorts a list of 7 items in L. 

 

 

 

Exercises ï Simple (Selection) Sort 

1. Use the simple (selection) sort algorithm to sort the list [7, 8, 5, 2, 4, 6, 3] shown below. 

(Fill in the blanks in the same manner as above.) 

 

  



 

Algorithms Manual  
for LCCS Teachers 

 

  24 

2. Perform a simple (selection) sort on the face values of the following cards. 
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Insertion Sort 

We can develop our understanding of the insertion sort as follows: 

- a list with one item is already sorted.  

- a list with two items can be sorted by sorting the second item relative to the first. If the 

second item is greater than the first, the two items are already sorted and nothing further 

needs to be done; otherwise we obtain our sorted list by swapping the two items. 

- a list with three items can be sorted by sorting the first two items (as just described) and 

then sorting the third item relative to the first two. 

- a list with four items can be sorted by sorting the first three items (as just described) and 

then sorting the fourth item relative to the first three. 

- And so on. 

 

Example 

Letôs say we were asked to sort the list of numbers shown below in ascending order. 

 

The desired output is: 

 

 

The insertion sort starts at the leftmost item. It sets a marker between the first and second 

item. Everything to the left of the marker is always sorted and everything to the right of the 

marker remains to be sorted. This is illustrated as follows: 

 

 

The algorithm proceeds as follows until the entire list is sorted: 

1. Select the first item from the unsorted list (in this case 7)  

2. Insert the selected item into the correct position within the sorted this (this is done by 

swapping this item to the left until it arrives at the correct position) 

3. Advance the marker to the right by one position 
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After following these three instructions the 7 remains in the same positon (as it is already 

sorted relative to 5) and the marker is advanced to the right by 1. The list now looks like this: 

 

 

The next item to sort is 3 (because this is the first item in the unsorted list) and so 3 is 

inserted into the sorted list. This is what the list looks like after 3 has been inserted. The next 

item to insert will be 6. 

 

By this point you may be wondering how, on each pass, the selected item gets inserted into 

its correct position. Weôll come to this soon ï for the moment itôs important to grasp the outer 

loop which iterates over each item in the list. 

 

At this point 6 has been inserted into the sorted list and the next item to sort is 2. 

 

 

This is what the list looks like after 2 has been inserted. The next item to sort is 9. 

 

 

Since 9 is already sorted relative to the list on its left the list will remain unchanged. We just 

advance the marker to the right by one position and consider the next item to sort which is 1. 
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This is what the list looks like before 1is inserted into its correct (sorted) position. 

 

 

This is what the list looks like after 1 has been inserted. The next item to sort is 8. 

 

 

This is what the list looks like after 8 has been inserted. The next (and final) item to sort is 4. 

 

 

This is what the list looks like after 4 has been inserted. There are no more items to the right 

of the marker and so the algorithm terminates. 

 

 

Because we have maintained the list to the left of the marker in a sorted state throughout, 

we can safely conclude that this final list is sorted.  

 

Reflection Exercise 

1. How many insertions do you think would be necessary if the initial list was  

a) already sorted e.g. 1, 2, 3, 4, 5 

b) in reverse order e.g. 5, 4, 3, 2, 1 

 

 

2. Generalise your answer to 1 for a list of any size (i.e. a list of size ὲ.) 
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Inserting the item to its correct position 

Before we look at an implementation of the insertion sort, it is helpful to understand how step 

2 of the algorithm works. Step 2 says insert the selected item into the correct position within 

the sorted this. How do we do this?  

 

Consider the transition (shown here) that takes place in the final step of our example. The 

question is: how does the 4 get inserted into the correct position? 

From: 

 

To: 

 
 

The answer is: 4 is repeatedly swapped back with all larger numbers to its left. The step-by-

step sequence of swaps are illustrated below: 

 

Start 

Swap 9 and 4 

Swap 8 and 4 

Swap 7 and 4 

Swap 6 and 4 

Swap 5 and 4 

Stop 

 

The algorithm for this swap sequence is shown in the code below. 

    # repeatedly swap a[j] with larger  numbers to its left  

    while (a[j] < a[j - 1] and j>0):  

        t emp = a[j]  

        a[j] = a[j - 1]  

        a[j - 1] = t emp 

        j = j - 1 
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The full Python implementation of the insertion sort is shown below: 

 

# 1. Initialise an unsorted list  

t he_l ist = [5, 7, 3, 6, 2 ]  

# 2. Initialise a marker  

marker = 1  

 

# 3. Traverse through all list items  

while (marker < len( t he_list )):  

    # 4. Insert the selected item to its correct position  

    j = marker  

    while ( t he_list [j] < t he_list [j - 1] and j>0):  

        tmp = the _l ist[j]  

        t he_list [j] = t he_list [j - 1]  

        t he_list [j - 1] = tmp  

        j = j - 1 

         

    # 6. Advance the marker to the right by 1 position  

    marker = marker+1  

 

Starting with t he_list  comprising of [5, 7, 3, 6, 2] the table below highlights the 

comparisons and exchanges that take place on each pass of the insertion sort algorithm. 

 

Pass State of List (before-> after) Comment 

1 [5, 7, 3, 6, 2] -> [5, 7, 3, 6, 2] 
5 and 7 are compared but not exchanged since 
they are both in order relative to one another 

2 
[5, 7, 3, 6, 2] -> [5, 3, 7, 6, 2]  
[5, 3, 7, 6, 2] -> [3, 5, 7, 6, 2] 

7 and 3 are compared and exchanged 
5 and 3 are compared and exchanged 

3 [3, 5, 7, 6, 2] -> [3, 5, 6, 7, 2] 7 and 6 are compared and exchanged 

4 

[3, 5, 6, 7, 2] -> [3, 5, 6, 2, 7]  
[3, 5, 6, 2, 7] -> [3, 5, 2, 6, 7]  
[3, 5, 2, 6, 7] -> [3, 2, 5, 6, 7]  
[3, 2, 5, 6, 7] -> [2, 3, 5, 6, 7] 

7 and 2 are compared and exchanged 
6 and 2 are compared and exchanged 
5 and 2 are compared and exchanged 
3 and 2 are compared and exchanged 

 

The total number of passes is four. The total number of comparison operations is eight and 

the total number of exchanges is seven. 
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Exercises ï Insertion Sort 

1. Explain what is going on at each stage of the insertion sort algorithm below.  

Make sure to identify all comparison and exchange operations. 

 

Data Comment 

 

This is the initial unsorted list. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Total number of comparison operations:  

 

Total number of exchanges:  
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2. Perform an insertion sort on the following list of integers: 
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Bubble Sort 

The bubble sort algorithm works by repeatedly comparing adjacent element and swapping 

them if they are out of order. The effect is that on each pass of the bubble sort, the largest 

unsorted item óbubblesô towards the end of the list into its sorted position. 

 

The algorithm is summarised below for an ascending order sort: 

 

1. Initialise an unsorted list 

2. Traverse across every element in the list 

3.  Compare all adjacent elements starting from the beginning 

4.   If the elements are out of order, then swap them 

 

Example 

Letôs look at how the bubble sort algorithm sorts the 

list of numbers shown here into ascending order. 
 

 

After 
Pass 

State of List (at the end of the pass) Explanation 

1 

 

After pass 1, 7 has óbubbledô up 
to the top of the list.  

2 

 

After pass 2, 6 has bubbled into 
its sorted position. 

3 

 

After pass 3, 5 has bubbled into 
its position. 

4 

 

After pass 4, 3 has bubbled into 
its position. 

5 

 

After pass 5, 2 has bubbled into 
its position.  

 

Notice that 5 passes over the list were required in order to sort the 5 items. In general, the 

bubble sort will take ὲ passes to sort a list of ὲ items. 
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We now examine what happens in pass 1 in greater detail. The following illustrations depict 

the exchanges that take place in pass 1, and in particular, explain how 7 bubbles to the end 

of the list. 

 

This is the initial list. 

 
The first two numbers to be compared are 5 and 
7. Since these two numbers are in order no 
exchange is necessary.  

The algorithm then proceeds by comparing the 
next adjacent pair i.e. 7 and 3. Since they are out 
of order they must be swapped. 

 

This is what the list looks like after 7 and 3 have 
been swapped. 

 

The algorithm then compares 7 and 6 and since 
these two numbers are out of order they must be 
swapped. 

 

6 and 7 have been swapped. 

 

7 and 2 are the next ajacent pair to be compared. 
Since 7 is greater than 2 they are swapped. 

 

This is the final state of the list after pass 1. As 
there are no more adjacent pairs the algorithm 
proceeds to pass 2.   

 

Notice that in the above list of 5 items there are 4 comparisons. In general, for a list of ὲ 

elements, the bubble sort will make ὲ ρ comparisons on each pass. 

 

Reflection Exercise 

Do you think the bubble sort is an efficient algorithm? Justify your answer. 
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We will now look at a Python implementation of the bubble sort algorithm. 

 

# Bubble Sort v1  

 

# 1. Initialise an unsorted list  

L = [5, 7, 3, 6, 2]  

 

print("INPUT (initial list): ", L)  

 

# 2. Traverse across every element in the list  

for i in range(len( L)):  

    # 3. Compare all adjacent elements starting from the beginning  

    for j in range(len( L) - 1):  

        # 4. if the elements are out of order, then swap them  

        if L[j] > L[j+1]:  

            te mp = L[j+1]  

            L[j+1] = L[j]  

            L[j] = temp  

 

print("OUTPUT (sorted list): ", L)  

 

The exchanges that take place on each pass are highlighted below 

Pass Exchanges (before -> after) Comment 

1 

[5, 7, 3, 6, 2] -> [5, 7, 3, 6, 2]  
[5, 7, 3, 6, 2] -> [5, 3, 7, 6, 2]  
[5, 3, 7, 6, 2] -> [5, 3, 6, 7, 2]  
[5, 3, 6, 7, 2] -> [5, 3, 6, 2, 7] 

This sequence of exchanges was detailed on 
the previous page. Notice that after 4 
comparisons and 3 exchanges 7 has bubbled 
up to the end of the list 

2 

[5, 3, 6, 2, 7] -> [3, 5, 6, 2, 7]  
[3, 5, 6, 2, 7] -> [3, 5, 6, 2, 7]  
[3, 5, 6, 2, 7] -> [3, 5, 2, 6, 7]  
[3, 5, 2, 6, 7] -> [3, 5, 2, 6, 7] 

Notice that 5 and 3 are initially exchanged. 
5 and 6 are compared but not exchanged 
because 6 is bigger. 6 and 2 are then 
exchanged. This brings 6 to its sorted position. 

3 

[3, 5, 2, 6, 7] -> [3, 5, 2, 6, 7]  
[3, 5, 2, 6, 7] -> [3, 2, 5, 6, 7]  
[3, 2, 5, 6, 7] -> [3, 2, 5, 6, 7]  
[3, 2, 5, 6, 7] -> [3, 2, 5, 6, 7] 

3 is compared to 5 but there is no exchange (as 
they are in order). Then 5 is compared to 2 and 
they are exchanged. 5 is compared to 6 and 
then 7 but no exchanges ensue and so 5 is in 
its sorted positon. 

4 

[3, 2, 5, 6, 7] -> [2, 3, 5, 6, 7]  
[2, 3, 5, 6, 7] -> [2, 3, 5, 6, 7]  
[2, 3, 5, 6, 7] -> [2, 3, 5, 6, 7]  
[2, 3, 5, 6, 7] -> [2, 3, 5, 6, 7] 

3 is exchanged with 2 to bring it to its final 
sorted position. No further exchanges take 
place. 

5 

[2, 3, 5, 6, 7] -> [2, 3, 5, 6, 7]  
[2, 3, 5, 6, 7] -> [2, 3, 5, 6, 7]  
[2, 3, 5, 6, 7] -> [2, 3, 5, 6, 7]  
[2, 3, 5, 6, 7] -> [2, 3, 5, 6, 7] 

Although each pair of adjacent items are 
compared, no exchanges take place as the list 
happens to be sorted. The comparisons are 2 
with 3, 3 with 5, 5 with 6 and 6 with 7. 
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By this stage it should be evident that the bubble sort is not a very efficient algorithm. We will 

discuss two inefficiencies: 

 

1. The first inefficiency derives from the fact the outer loop traverses over every element in 

the list ï even if the list is already sorted (and no matter how many items the algorithm 

thinks it has left to sort).  

 
To highlight this problem let us consider how the algorithm behaves if it is presented with 

a list that was already sorted e.g. L = [1, 2, 3, 4] . The algorithm proceeds to 

make 4 passes over the data - each pass compares the adjacent elements (3 

comparisons: 1 with 2, 2 with 3 and 3 with 4). No exchange ever ensues since elements 

are all in the required order giving a total of 12 unnecessary comparison operations. 

 

Now consider the algorithmôs behaviour if the initial list look like this: [4, 2, 3, 1 ] . By 

the end of the first pass 4 would have bubbled to the end and the list would be sorted. 

Despite this, the algorithm would continue with three more óexchange-lessô passes. In 

this case we we have 9 unnecessary comparison operations 

 

In order to eliminate this inefficiency, we introduce a flag called exchange . The outer 

loop is modified so that the program traverses across every element as long as 

exchange has a value of True . The flag is initialised to False  at the start of each pass 

and set to True  only when an exchange occurs. 

 
# Bubble Sort v2  

# 1. Initialise an unsorted list  

aList = [1, 2, 3, 4]  

 

exchange = True  

i = 0  

# 2. Traverse across every element as long as there are exchanges  

while (i < len( L)) and ( exchange  == True) :  # or just óexchangeô 

    exchange = False # assume that there will be no exchanges  

    # 3. Compare all adjacent elements starting from the beginning  

    for j in range(len( L) - 1):  

        # 4. if the elements are out of orde r, then swap them  

        if L[j] > L[j+1]:  

            temp = L[j+1]  

            L[j+1] = L[j]  

            L[j] = temp  

            exchange = True # we've done an exchange!  

             

    i = i +1 # increment the loop counter  
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Although it might seem trivial, this is a decent improvement on the previous version of 

the algorithm. The algorithm now recognises (by the absence of any exchanges) when 

the list is sorted and can terminate accordingly. Consider how many comparison 

operations this would save in a sorted list of 1,000,000 items. 

 

2. The second inefficiency in the algorithm derives from the fact that the algorithm ignores 

the items it has already sorted on previous passes. To illustrate this point clearly let us 

return to our earlier example. The table below highlights the (unnecessary) comparisons 

that are made involving items that have already been sorted. 

 

Pass State of List (before-> after) Comment 

1 [5, 7, 3, 6, 2] -> [5, 3, 6, 2, 7] 
After pass 1, 7 has been moved into its sorted 
position. There are no unnecessary comparisons. 

2 [5, 3, 6, 2, 7] -> [3, 5, 2, 6, 7] 
6 is unnecessarily compared to 7 at the end of 
pass 2 (because since 7 has already been sorted 
the comparison cannot result in an exchange). 

3 [3, 5, 2, 6, 7] -> [3, 2, 5, 6, 7] 
5 is unnecessarily compared to 6 and 6 is 
unnecessarily compared to 7 at the end of pass 2 

4 [3, 2, 5, 6, 7] -> [2, 3, 5, 6, 7] There are 3 unnecessary comparisons  

5 [2, 3, 5, 6, 7] -> [2, 3, 5, 6, 7] All 4 comparisons are unnecessary. 

 

Each pass makes ὲ ρ comparisons even though the comparisons involving the sorted 

items cannot result in an exchange. The solution is to reduce the number of iterations of the 

inner loop by 1 on each pass of the data.  

 

This is done in our final implementation of the bubble sort which is shown on the next page. 

 

The algorithm works by maintaining a variable, Ὥ such that for a list of length ὲ: 

- all items ὃπ ȢȢὭ ρ are unsorted and 

- all items ὃὭ ȢȢὲ ρ are sorted 
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# Bubble Sort v3  

 

# 1. Initialise an unsorted list  

L = [5, 7, 3, 6, 2 , 4, 1 ]  

 

print("INPUT (initial list): ", L)  

 

exchange = True  

n = len( L)  

i = 0  

# 2. Traverse across every element as long as there are exchanges  

while ( i  < n) and  exchange:  

    print("BEFORE PASS %d: %s " %( i +1, L))  

    exchange = False # assume that there will be no exchanges  

    # 3. Compare all unsorted adjacent elements  

    for j in range(n - i - 1):  

        # 4. if the elements are out of order, then swap them  

        print("%s " % L, end=" - > ")  

        if L[j] > L[j+ 1]:  

            L[j], L[j+1] = L[j+1], L[j] # Canonical swap!  

            exchange = True # we've done an exchange!  

             

        print("%s " % L)  

     

    print("AFTER PASS %d: %s " %( i +1, L))  

    i  = i +1 # increment the loop counter  

     

print("OUT PUT (sorted list): ", L)  

 

Take some time to study the code and understand how the for loop highlighted in the 

above code is used to improve the efficiency of earlier versions of the bubble sort algorithm. 

 

Notice the use of the print  statements to display the states of the list as the sort 

progresses - the output is shown on the next page.  

 

As an exercise you might consider modifying the code so that it computes the following: 

- the number comparisons on each pass 

- the total number of exchanges on each pass 

- the total number of comparisons 

- the total number of exchanges 
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Exercise ï Bubble Sort 

The data shown on the left below was generated by our final implementation of the bubble 

sort algorithm shown on the previous page. Use the right hand column to explain the 

progress of the algorithm. 

 

INPUT (initial list):  [5, 7, 3, 6, 2, 4, 1]  

BEFORE PASS 1: [5, 7, 3, 6, 2, 4, 1]  

[5, 7, 3, 6, 2, 4, 1] -> [5, 7, 3, 6, 2, 4, 1]  

[5, 7, 3, 6, 2, 4, 1] -> [5, 3, 7, 6, 2, 4, 1]  

[5, 3, 7, 6, 2, 4, 1] -> [5, 3, 6, 7, 2, 4, 1]  

[5, 3, 6, 7, 2, 4, 1] -> [5, 3, 6, 2, 7, 4, 1]  

[5, 3, 6, 2, 7, 4, 1] -> [5, 3, 6, 2, 4, 7, 1]  

[5, 3, 6, 2, 4, 7, 1] -> [5, 3, 6, 2, 4, 1, 7]  

AFTER PASS 1: [5, 3, 6, 2, 4, 1, 7]  

Pass 1: 

5 is compared with 7. No exchange 

7 is exchanged with 3 

 

 

 

 

 

BEFORE PASS 2: [5, 3, 6, 2, 4, 1, 7]  

[5, 3, 6, 2, 4, 1, 7] -> [3, 5, 6, 2, 4, 1, 7]  

[3, 5, 6, 2, 4, 1, 7] -> [3, 5, 6, 2, 4, 1, 7]  

[3, 5, 6, 2, 4, 1, 7] -> [3, 5, 2, 6, 4, 1, 7]  

[3, 5, 2, 6, 4, 1, 7] -> [3, 5, 2, 4, 6, 1, 7]  

[3, 5, 2, 4, 6, 1, 7] -> [3, 5, 2, 4, 1, 6, 7]  

AFTER PASS 2: [3, 5, 2, 4, 1, 6, 7]  

Pass 2: 

5 is exchanged with 3 

5 is compared with 6. No exchange 

 

 

 

 

BEFORE PASS 3: [3, 5, 2, 4, 1, 6, 7]  

[3, 5, 2, 4, 1, 6, 7] -> [3, 5, 2, 4, 1, 6, 7]  

[3, 5, 2, 4, 1, 6, 7] -> [3, 2, 5, 4, 1, 6, 7]  

[3, 2, 5, 4, 1, 6, 7] -> [3, 2, 4, 5, 1, 6, 7]  

[3, 2, 4, 5, 1, 6, 7] -> [3, 2, 4, 1, 5, 6, 7]  

AFTER PASS 3: [3, 2, 4, 1, 5, 6, 7]  

Pass 3: 

 

 

 

 

 

BEFORE PASS 4: [3, 2, 4, 1, 5, 6, 7]  

[3, 2, 4, 1, 5, 6, 7] -> [2, 3, 4, 1, 5, 6, 7]  

[2, 3, 4, 1, 5, 6, 7] -> [2, 3, 4, 1, 5, 6, 7]  

[2, 3, 4, 1, 5, 6, 7] -> [2, 3, 1, 4, 5, 6, 7]  

AFTER PASS 4: [2, 3, 1, 4, 5, 6, 7]  

Pass 4: 

 

 

 

 

BEFORE PASS 5: [2, 3, 1, 4, 5, 6, 7]  

[2, 3, 1, 4, 5, 6, 7] -> [2, 3, 1, 4, 5, 6, 7]  

[2, 3, 1, 4, 5, 6, 7] -> [2, 1, 3, 4, 5, 6, 7]  

AFTER PASS 5: [2, 1, 3, 4, 5, 6, 7]  

Pass 5: 

 

 

 

BEFORE PASS 6: [2, 1, 3, 4, 5, 6, 7]  

[2, 1, 3, 4, 5, 6, 7] -> [1, 2, 3, 4, 5, 6, 7]  

AFTER PASS 6: [1, 2, 3, 4, 5, 6, 7]  

Pass 6: 

 

 

BEFORE PASS 7: [1, 2, 3, 4, 5, 6, 7]  

AFTER PASS 7: [1, 2, 3, 4, 5, 6, 7]  

Pass 7: 

No Exchange 

OUTPUT (sorted list):  [1, 2, 3, 4, 5, 6, 7]  
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Quicksort 

The quicksort algorithm was developed in 1962 by the famous British computer scientist, 

Tony Hoare. As its name suggests, quicksort, is a very efficient sorting algorithm (considered 

to be the fastest general purpose sorting algorithm). Quicksort belongs to a special class of 

algorithms called divide-and-conquer algorithms and owes much of its efficiency to divide-

and-conquer as a general problem solving technique. (Merge sort is another popular 

example of a divide-and-conquer sorting algorithm and later in this manual we will see how 

binary search uses the divide-and-conquer technique is used to search for some arbitrary 

value in a list of keys.) 

 

The general principle of divide-and-conquer is to solve large problems by decomposing or 

breaking them down into smaller sub-problems and solving these smaller problems 

recursively, and then combining the results to form a complete solution.  

 

In particular, the quicksort algorithm operates by dividing its list into two partitions around 

some special value called a pivot. The lists are divided so that all the elements in the first 

partition are less than or equal to the pivot and all the elements in the second partition are 

greater than the pivot. By sorting the sub-lists using the exact same technique we eventually 

reach the point where all elements are sorted.  

 

The illustration below depicts an unsorted list with the last element chosen as an initial pivot. 

The list is partitioned into two sub-lists ï a left sub-list and a right-sub-list. All the elements in 

the left sub-list are less than the pivot and all the elements in the right-sub-list are greater 

than the pivot. The algorithm proceeds by sorting the two sub-lists recursively. 

 

 

 

The diagram depicts the initial pivot sorted with respect to the two sub-lists.  
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The steps of the quicksort algorithm can be expressed recursively as follows: 

 

STEP 1. Choose the rightmost element in the list as the pivot  

STEP 2. Create three empty lists called left_list , middle_list and right_list  

STEP 3. for each element (key) in the list  

- if element  is < pivot  add it to left_list  

- if element  is == pivot  add it to middle _list  

- if element  is > pivot  add it to right _list  

STEP 4. The result is a list made up by applying steps 1-3 to left_list , followed by the 

elements in middle _list , followed by applying steps 1-3 to right _list  

 

Each list is partitioned until it contains just one element. These steps are illustrated in the 

graphic below starting with an unsorted list [88, 46, 25, 11, 18, 12, 22] with 22 as the pivot. 
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A Python implementation of the quicksort algorithm is shown below: 

 

def quick_sort(L):  

    left_list = []  

    middle_list = []  

    right_list = []  

 

    # Base case  

    if len(L) <=1:  

        return(L)  

 

    # Set pivot to the last element in the list  

    pivot = L[len(L) - 1]  

 

    # Iterate through all elements (keys) in L  

    for key in L:  

        if key < pivot:  

            left_list.append(key)  

        elif key == pivot:  

            middle_list.append(k ey)  

        else:  

            right_list.append(key)  

 

    # Repeat the quicksort on the sub - lists and combine the results  

    return quick_sort(left_list) + middle_list + quick_sort(right_list)  

 

The crux of the algorithm is the partitioning process described in step 3 on the previous 

page. This process is applied recursively to every left and right list i.e. quicksort the left sub-

list and quicksort the right sub-list, until the list is either empty or contains a single element. 

(This is the base case used to end the recursion.) The final sorted list is assembled by 

concatenating these base case lists together. 

 

The algorithm can be tested using the following driver code: 

 

# Driver code ...  

L = [88, 46, 25, 11, 18, 12, 22]  

print("INPUT (initial list): ", L)  

print("OUTPUT (sorted list): ", quick_sort( L))  

 

When the program is run the following output is generated: 
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Notes: 

 

1) The same functionality of the final line of code in the function (i.e. the return statement) 

could be achieved by using the following three lines: 

 

    sorted_left_lists = quick_sort(left_list)  

    sorted_right_lists = quick_sort(right_list)  

    return sorted_left_lists + middle_list + sorted_right_lists  

 

2) The choice of pivot value is important and several different techniques are employed. In 

some implementations the middle element is chosen as the pivot; in others it is the first 

element; more advanced implementation select the pivot based on the arithmetic mean 

of the list elements. The implementation shown here use the last element for the pivot.  

 

A useful exercise is to consider how the performance of the algorithm would be impacted 

if the pivot chosen was either the smallest or the largest element in the list. 

 

3) This is not the most efficient implementation of the quicksort possible ï in fact, it is a very 

inefficient version of quicksort (and is used here because of its simplicity relative to other 

versions of the same algorithm). The inefficiency of this implementation is mainly down 

to its reliance on additional external memory in order to store the left and right sub-lists. 

For very large lists this becomes highly inefficient and even infeasible.  

 

More efficient implementations do not require the use of additional memory and can 

perform the sort using óin placeô memory. Such techniques work by exchanging elements 

either side of the pivot that are found to be out of order relative to the pivot. For example, 

elements that are larger than the pivot and to its left might be exchanged with elements 

that are smaller than the pivot and to its right. 
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Exercise 

Show, in the style of the quicksort tree diagram depicted earlier, how the following list of 

integers could be sorted using a quicksort. The initial pivot is 32 - shown here in red. 

 

 

 

Use the space below to explain in your own words how the quicksort algorithm works: 
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Linear Search 

Letôs say we were asked the question: does the list below contain the number fourteen? 

Without thinking twice, most of us would scan down through the list until we arrive at the 

number fourteen. This intuitive response is called a linear search. 

 

 

As we scan each element we perform a quick Boolean calculation. True  or False  - is the 

element I am looking at equal to fourteen? If the result is true , we have found the required 

element and the search can end; otherwise, if the result is False  we automatically (and very 

quickly) move on to the next element and repeat the Boolean calculation. This process 

continues until either we find fourteen, or we reach the end of the list, by which time we can 

conclude that the fourteen is not contained in the list. 

 

The linear search algorithm is also called a sequential search. The sequential nature of the 

process is illustrated below. 

 

Is 15 the same as 14?  

No.  

Move to next element.  

 

Is 4 the same as 14?  

No.  

Move to next element.  

 

Is 41 == 14?  

No.  

Move to next element.  

 

13 == 14?  

No.  

Next element  

 

if 24  == 14:  

 Found  

Else:  

 Next element  

 

if 14  == 14:  

 Found (so STOP!)  

Else:  

 Next element  
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Given a list of elements to search through (i.e. keys), and a target value to search for (i.e. an 

argument), the steps of the linear (sequential) search algorithm can be expressed as follows: 

 

1. Set a marker at the start of the list (called idx  in the flowchart below) 

2. Loop through steps σ χ as long as there are more numbers to compare 

3.  Compare the current element to the target value 

4.  If they match: 

5.   Return the value of the marker (idx ) 

6.  If they are not equal: 

7.   Advance the marker right by one position (idx  = idx +1) 

8. Return the value of the marker (idx ) 

 

 

When the above algorithm is applied to find the number fourteen in the list show below it will 

result in a value of 5. This is the index position of the target element in the list. (Recall, that a 

list index is a zero-based positional offset.) 

 

 

It is important to note that when the target value is not found in the list, the algorithm returns 

the length of the list. For example, if the algorithm was applied to find the number 22 in the 

above list the result will be 8 (because the length of this list is 8). When a target value is 

found in a list, the search operation is said to be successful; otherwise unsuccessful. 
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Unsuccessful searches can be inferred by the calling code simply by comparing the returned 

value to the list length. If the value returned by the linear search algorithm is equal to the list 

length, then the code can deduce that the search was unsuccessful. (This is because list 

lengths are one-based i.e. the length of a list is always one more than the index of the final 

element. 

 

In summary, the linear search algorithm works by starting at the first list element and working 

its way from left-to-right, it compares each element with the target value until either a match 

is found or the end of the list has been reached. 

 

Some advantages and disadvantages of the linear search algorithm are as follows: 

 

Advantages 

1. Simplicity. The linear search is intuitive to most. It is relatively easy to understand and 

implement. 

2. It does not require the data to be stored in any particular order. 

 

Disadvantage 

The main disadvantage of the linear search algorithm lies in its lack of efficiency. The more 

elements there are in a list the greater the amount of time it will take to search for any 

specific element. In fact, the amount of time it takes to find a target value increases in 

proportion to the number of elements in the list to search. Therefore, it will take ten times 

longer to find an element in a list of 1,000 elements than it would for a list of 100 elements. 

This is called linear time complexity, or O(n) for short.  

 

One Python implementation of the linear search algorithm is shown in the code below.  

def linear_search_v1(v, L):  

    i = 0  

    while i < len(L): # more?  

        if L[i] == v: # match?  

            return i # successful  

         

        i = i + 1  

 

    return i # unsuccessful  

 

  



 

Algorithms Manual  
for LCCS Teachers 

 

  47 

The function linear_search_v1  is defined to return the position of target value, v  in list, L 

if successful; otherwise the length of the list will be returned. 

 

The algorithm can be tested using the following driver code ï the user is prompted to enter a 

target value to search for. This is stored in the variable, argument. 

 

# Driver code ...  

keys = [15, 4, 41, 13, 24, 14, 12, 21]  

argument = int(input("Enter a target value: "))  

 

result = linear_search_v1(argument, keys)  

 

if (resu lt != len(keys)):  

    print("%d found at position %d" %(argument, result))  

else:  

    print("%d not found. Return value is %d" %(argument, result))  

 

Some sample runs are illustrated below: 

 

 

 

A number of common variations on this implementation of the linear search algorithm exist. 

Some of these variations are shown on the next page. 
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Version 2 of our linear search algorithm uses a Boolean variable called match  to indicate 

whether a match has been found (or not) by the algorithm. Initially, match  is set to False  

and the search continues as long as it remains False  (i.e. not match  will be True  when 

match  is False ) and there are more elements to compare (i.e. i < len(L) ).  

 

def linear_search_v2(v, L):  

    i = 0  

    match = False  

     

    while not match and i < len(L):  

        if L[i] == v: # match?  

            match = True  

        else:  

            i = i + 1  

 

    return i  

 

This next version is a refinement on the one above. Basically, the logic for finding a match 

and testing for the end of the list are combined into one Boolean expression which becomes 

the loop guard. The need for an additional if - else  test inside the loop is removed. The 

elegance of this solution lies in the fact that the loop body needs only to contain a single 

statement (i = i + 1 ) to advance to the next element. 

 

def linear_search_v3(v, L):  

    i = 0  

    while i < len(L) and L[i] != v: # more? and match?  

        i = i + 1  

 

    return i  

 

Version 4 of our algorithm shown below uses a for  loop instead of a while  loop. Notice 

that len(L)  is returned in this version to indicate that the search was unsuccessful.  

 

def linear_search_v4(v, L):  

    for i in range(len(L)):  

        if L[i] == v:  

            return i  

         

    return len(L)  
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This next version ï perhaps the simplest of all ï uses a for  loop and exploits the Python 

óin ô operator. 

 

def linear_search_v5(v, L):  

    i = 0  

    for element in L:  

        if element == v:  

            return i  

        i = i + 1  

         

    return len(L)  

 

One interesting question worth exploring is:  

How could the linear search algorithm be improved if it was known that the list to be 

searched was already sorted? 

 

Finally, it is worth noting linear search can be implemented recursively as follows: 

def linear_search_v6(v, L, index=0) :  

    if len(L) != 0 :  

        if L[0] == v:  

            return index  

 

        r =  linear_search_v6(v, L[1:], index+1)  

        if r != - 1:  

            return r  

 

    return - 1 

 

The sequence of lists passed into the 

recursive function are stacked as show. 

(This is based on the same example we 

used earlier i.e. the target value is 14.) 

 

The approach taken is to compare the 

target value, v  with first element in L. If 

element is found at the first position 

(L[0] ), the index is returned. 

Otherwise, recur for the remainder of 

the list (L[1:] ). 
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Exercise 

Use the flowchart below to explain the process of finding the number 26 in the following list 

of values: 

 

 

 

 

 

 

Explain the meaning of more? in the above flowchart? 

 

 

Explain the meaning of match? in the above flowchart? 
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Binary Search 

Many people are familiar with the following (guessing) game. 

 

Think of a number between 1 and 32. Now ask someone to guess the number you are 

thinking of. In each turn, if the guess is not correct, tell your opponent whether the number is 

too high or too low and ask them to try again. Keep going until he or she guesses your 

number. How many guesses did it take? Go again. Play the game a few times taking note of 

the number of guesses it took to find the secret number each time.  

 

Can you explain why the maximum number of guesses it will take to correctly guess any 

number you can think of between 1 and 32 would be 5? Or is it 6? What if the problem space 

was doubled i.e. how many guesses would be needed to guarantee success for any number 

between 1 and 64? 

 

The strategy used by most in the above game is the same strategy employed by the binary 

search algorithm. It is also the same strategy that people would have used to look up 

telephone numbers from an alphabetically sorted list of names contained in what was called 

a phone book back in the 20th century! 

 

The binary search algorithm is an example of a divide-and-conquer algorithm. Divide-and-

conquer is problem solving technique which works by repeatedly reducing the problem 

(divide) and then attempting to solve the problem (conquer) on the new problem space. In 

this case the approach is to repeatedly divide the portion of the list that could contain the 

item in two (i.e. half), until either the item is found or the list cannot be divided any further. 

 

Instead of testing the list's first element, the binary search starts with the element in the 

middle. If that element happens to contain the target value, then the search is over. If the 

target value is less than the middle element of the list, we restrict the search to the first half 

of the list; otherwise we search the second half of the list. Either way, half of the listôs 

elements are eliminated from further searching on each iteration and the procedure is 

repeated for the half of the list that potentially contains the value. This process continues 

until the value being searched for is either found, or there are no more elements to test.  

 

Donald Knuth is famously quoted as saying that an algorithm must be seen to believed, and 

the best way to learn what an algorithm is all about is to try it. So letôs put Knuthôs advice to 

practice and try the binary search algorithm.  
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Binary search pseudo-code 

The pseudo-code for the binary search algorithm is as follows: 

 

1.  Set low = 0  

2.  Set high = length of list ï 1 

3.  Set mid = , rounded down to an integer  

4.  If the value at the mid position is the same as the target value  

 Return mid  

Else If the value at the mid position is less than the target value  

Set low = mid + 1  

Else If the value at the mid position is greater than the target value  

Set high = mid -  1 

5.  As long as low doesnôt ócross overô high, go back to step 3 above  

6.  Return - 1 

 

Letôs say we were tasked with applying the above algorithm to search for a target value of 28 

in the following list of 16 values. Notice the index numbers from 0é15 are displayed over 

each list element and, crucially, that the list has already been sorted.  

 

 

 

In the first three steps of the algorithm we set the variables low , high  and mid  to 0, 15 and 

7 respectively. 

 

 

 

We now move to line 4 of the algorithm and since 14 is less than 28 we change the value of 

low  to mid+1  which is 8. The value of mid  is computed to be ψ ρυȾς which is 11 

(rounded down). Our state now look like this. 
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Since 25 is less than 28 we change the value of low  again, this time to 12. The new value 

for mid  becomes 13 and the state can be visualised as follows: 

 

 

 

Since the next comparison finds the target value, the algorithm can terminate successfully. 

 

The use if trace tables can be very helpful in carrying out a binary search. A trace table for 

this example might look as follows: 

 

low  mid  high  Rough work  

0 7 15 

L[7]  is 14.  

14 < 28 so move low  to the right of mid  and re-compute 

mid  

mid  now becomes 11 

8 11 15 

L[11 ] is 25.  

25 < 28 so move low  to the right of mid  and re-compute 

mid  

mid  now becomes 13 

12 13 15 L[11]  is 28. Found! 

 

The graphic below taken from geeksforgeeks.org is a nice illustration of how the binary 

search finds the letter óJô in the list made up of the first 24 letters of the alphabet (óAô ï óXô) 
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A Python implementation of the binary search algorithm is shown below in the function 

binary_search . The function is defined to return the position of some target value, v  in a 

list, L if successful; otherwise the length of the list will be returned. 

 

def binary_search(v, L):  

 

    low = 0  

    high = len(L) - 1 

 

    while (low <= high):  

        mid = (low+high)//2  

         

        if L[mid] == v:  

            return mid  

        elif L[mid] < v:  

            low = mid + 1  

        else:  

            high = mid -  1 

             

    return len(L)  

 

The algorithm can be tested using the driver code shown below. The list, key s  is first 

initialised The user is then prompted to enter a target value to search for. This is stored in 

the variable, argument . 

 

# Driver code ...  

keys = [2, 4, 5, 7, 8, 9, 12, 14, 17, 19, 22, 25, 27, 28, 33, 37]  

argument = int(input("Enter a target valu e: "))  

 

result = binary_search(argument, keys)  

if (result != len(keys)):  

    print("%d found at position %d" %(argument, result))  

else:  

    print("%d not found. Return value is %d" %(argument, result))  

 

Some sample runs are shown below. 

Sample Run #1 

Look for v , 28 in L 
 

Sample Run #2 

Look for v , 57 in L 
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Exercise 

Given the list, L of sixteen integers shown below. 

 

 

 

Describe the binary search path to search L for the following target values, v . 

 

a) 19 b) 12 c) 15 

 

A trace table with the initial values of low , mid  and high  already filled in is provided to get 

you started. 

 

low  mid  high  Rough work  

0 7 15  
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The main advantage and disadvantage of the binary search are as follows. 

 

Advantage 

The binary search is much a more efficient algorithm than the linear search. Every time it 

makes a comparison and fails to find the desired item, it eliminates half of the remaining 

portion of the array that must be searched. For example, consider an array with 1,000 

elements. If the binary search fails to find an item on the first attempt, the number of 

elements that remains to be searched is 500. If the item is not found on the second attempt, 

the number of elements that remains to be searched is 250. This process continues until the 

binary search has either located the desired item or determined that it is not in the array. 

With 1,000 elements this takes no more than 10 comparisons. Compare this to the 

performance of the linear search which for this scenario would need to make an average 

number of 500, and a worst case of 1,000 comparisons to achieve the same result. 

 

The following charts illustrate how the two search algorithms stack up against each other in 

terms of performance. We are already aware that the performance of the linear search 

increases in proportion to the number of items in the list to search. This linearity is clearly 

shown by the blue line below. However, notice how the performance cost of the binary 

search (shown by the brown line) barely rises above the x-axis using this scale. 

 

 

 

The next graph shows the same data but this time the x-axis is scaled logarithmically. Again 

the rise in cost of the binary search is barely noticeable as the size of the list grows. Notice, 

however that the cost of the linear search appears to grow exponentially with respect to the 

size of the list to search. 
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The final graphs shown below uses a log-log scale i.e. both x- and y-axes are scaled 

logarithmically.  

 

 

 

Here we can finally see the true logarithmic nature of the efficiency of the binary search 

emerge. In particular, notice that the performance of the binary search is a logarithmic 

function of the size of the problem space. Furthermore, the graph is evidence that binary 

search is exponentially faster than its linear counterpart. 

 

Disadvantage 

The main drawback of the binary search is that the elements must be sorted beforehand. 
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Recursive Implementation 

The code below shows a recursive implementation of the binary search. The function 

searches for v  in L between L[low]  and L[high] . 

 

def recursive_binary_search(v, L, low, high):  

     

    # JE: Uncomment this next line to see the search space  

     #print("v(%d) L(%s) low(%d) high(%d)" %(v, str(L[low:high+1]), low, high))  

     

    if low > high:  

        return len(L) # Not Found!  

 

    mid = (low + high)//2  

 

    if v == keys[mid]: # Found!  

        # v is at mid in L so breakout of recursion  

        return mid  

 

    elif v < keys[mid]:  

        # v is in the lower half of L so recur on L up to mid - 1 

        return recursive_binary_search(v, L, low, mid - 1)  

 

    # v is in the upper half of L so recur on L from mid+1  

    return recursive_binary_search(v, L, mid+1, high)  

 

As is the case with all recursive algorithms there is a base case and a reduction step. In the 

base case the function returns without making a recursive call, and in the reduction step the 

function makes a recursive call (i.e. it calls itself) and in so-doing moves one step closer to 

the base case. 

 

In this example, there are two base cases as follows: 

1) The list is empty (this occurs when low > high) and 

2) The middle element in the list is the value being searched for 

 

The recursive call depends on the outcome of a comparison between the middle element in 

the list being searched and the target value: 

- if the target value is less than the middle element the function recurs on first (lower) half 

of the list i.e. recursive_binary_search(v, L, low, mid - 1)  

- if the target value is greater than the middle element the function recurs on second 

(upper) half of the list i.e. recursive_binary_search(v, L, mid+1, high)  
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The recursive binary search algorithm can be tested using the driver code shown below. The 

list, keys  is first initialised The user is then prompted to enter a target value to search for. 

This is stored in the variable, argument .  

 

The initial call to the recursive function to search for argument  in keys  is highlighted in 

bold. Note that the search is confined to work within the index range that is specified by the 

last two arguments i.e. 0 and 15 in the case of this example. 

 

# Driver code ...  

keys = [2, 4, 5, 7, 8, 9, 12, 14, 17, 19, 22, 25, 27, 28, 33, 37]  

argument = int(input("Enter a target value: "))  

 

result = recursive_binary_search(argument, keys, 0, len(keys) - 1)  

 

if (result != len(keys)):  

    print("%d found at position %d" %(argument, result))  

else:  

    print("%d not found. Return value is %d" %(argument, result))  

 

Three separate sample runs to search for 14, 28 and 38 in keys  are shown below. The 

values of variables, v , L, low  and high  at each step of the recursion process are shown for 

information purposes. 

 

 

 

 

 

 

  



 

Algorithms Manual  
for LCCS Teachers 

 

  60 

Activity #2: Developing an understanding of basic sorting algorithms 

The main objective of this activity is that each participant gains a procedural understanding 

of the simple (selection) sort, the insertion sort and the bubble sort algorithms. 

 

For this activity participants are divided into groups (4 individuals per group is ideal) and 

each group is assigned with an initial algorithm to study. 

 

 

 

Stages 1 and 2 (15 minutes) 

Everyone spends five minutes reading the assigned algorithm to themselves.  

In the next five to ten minutes the algorithm is discussed in groups. The aim of this 

discussion is to ensure that everyone has a concrete understanding of how the algorithm 

works ï points of confusion are clarified and a strategy for explaining how the algorithm 

works to others is agreed upon. 

 

Stage 3 (10 minutes x 2) 

Two people (pairs) from each group remain at their original table while the other pair move to 

the another table (e.g. 1 ăĄ 4; 2 ăĄ 5; 3 ăĄ 6). The pairs explain/demonstrate their 

algorithms to one another (no more than 5 minutes per pair!).  

 

This is repeated once so that everyone has had an opportunity to learn each of the three 

elementary sorting algorithms. 

A detailed description of each algorithm is provided elsewhere in this manual. 
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Activity 2.1 The Simple (Selection) Sort 

Letôs say weôre tasked with sorting the values of some list, L arranged as follows:  

 

 

Place your index finger as a marker under the first element (i.e. the 9 of diamonds) and 

proceed as follows: 

- find the smallest value to the right of your marker and swap the two values 

- move your marker (index finger) one place to the right 

- repeat this process until the marker reaches the end of the list 

 

Use the space below to trace the state of the list as you progress: 

 

 

When you reach the end the list should be sorted as follows: 
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Use the space below to describe your own understanding of how the simple (selection) sort 

algorithm works. 
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Activity 2.2 The Bubble Sort 

The bubble sort repeatedly óbubblesô larger items towards the (sorted) end of the list. Given 

an unsorted list, L as input: 

 

 

The table below depicts the state of L at the end of each pass of the bubble sort algorithm. 

 

After 
Pass # 

State of List (at the end of the pass) 
Notes  
(what exchanges take place?) 

1 

 

 

2 

 

 

3 

 

 

4 

 

 

5 

 

 

 

How many exchanges would take place if the initial list was: 

a) already sorted, b) in reverse order? 

a) Already Sorted e.g. [1, 2, 3, 4, 5] 

 

 

 

b) Reverse Order e.g. [5, 4, 3, 2, 1] 
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Use the space below to explain how the bubble sort algorithm works: 
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Activity 2.3 The Insertion Sort 

In any list the first item is always considered sorted with respect to all the items to its left. 

Then working from left to right each subsequent item is inserted into its correct place with 

respect to the previously sorted items.  

 

Follow the instructions below to sort the following list: 

 

 

Place your index finger as a marker under the first item in the unsorted list (i.e. in this case 

the first selected item will be 7) and proceed as follows: 

- insert the selected item into its correct place within the sorted list (to the left). This is 

done by repeatedly swapping back (leftwards) with all larger neighbours to the left 

- move your marker (index finger) one place to the right (the next selected item in this 

example will be 3) 

- repeat this process until the marker reaches the end of the list 

 

Use the space below to trace the state of the list at the end of each pass: 

 

 

The final sorted list will look like this: 
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Use the space below to explain how the insertion sort algorithm works: 
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Section 3 - Analysis of Algorithms 

 

Introduction to Algorithmic Efficiency (Complexity) 

 

Now that we have developed an understanding of how some search/sort algorithms work, 

the next logical step is to examine just how well they work. In this section we will analyse the 

performance of algorithms. In computer science this is often referred to as algorithmic 

efficiency or complexity. Two common measures of algorithmic efficiency are space and time 

ï the former provides an indication of the demands an algorithm places on memory in terms 

of space requirements, while the later focuses on the time requirements of an algorithm. For 

the most part, we will be confining the remainder of our discussion to time complexity.  

 

The study of time complexity provides us with a framework which can be used to compare 

algorithms and understand how well they perform in relation to one another. Before we can 

begin to compare algorithms in terms of their performance however, we must first devise (or 

at least agree upon) some system that is both impartial and reliable. 

 

On the surface it might seem fair and make sense to simply time how long it takes an 

algorithm to run in minutes and seconds (or milliseconds) and use this as a measure of 

performance. As it turns out however this would be neither fair nor reliable. This is because a 

computerôs performance can depend on a variety of different factors (e.g. processor clock 

speed, word size, bus width and amount of available memory), and so, an algorithm that 

takes 1000 milliseconds to run on one computer might run in just 10 milliseconds on another 

(one hundred times faster!). In fact, depending on the processor load, the time taken to run 

an algorithm could potentially vary significantly from run to run on the same processor.  

 

Furthermore, the running time of an algorithm is likely to vary in accordance with the size of 

its input. Intuitively it is easy to understand that a particular sorting algorithm will sort 1,000 

integers must faster than it will sort 1,000,000 integers. However, as we will soon learn to 

appreciate (hopefully!), it is the specific techniques and nuances employed by algorithms 

that have a much greater bearing on performance than the size of the input.  

 

And then there are questions such as what is the fastest time an algorithm can run in i.e. 

what is the best case performance? Or is there an average performance time for a particular 

algorithm? What about a worst case? 
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As it turns out it is this final question (regarding worst case) that computer scientists are 

most interested in. The reason for this is that a worst case running time gives users a bottom 

line guarantee that an algorithm will finish at worst within a particular timeframe, and for this 

reason worst case scenario is used as a metric for comparing algorithms.  

 

From the preceding section is should be evident that something other than exact running as 

a metric for time complexity is needed. That something is Big-O. 

 

Big O 

Big O is a notation used in Computer Science to describe the worst case running time (or 

space requirements) of an algorithm in terms of the size of its input usually denoted by ὲ.  

 

By using Big-O notation, algorithms can be broadly classified into one of the groups 

described below. The running time (or space requirements) of algorithms within the same 

classification is of the same order of growth with respect to ὲ.  

 

The imprecise nature of Big-O is important to understand from the outset. For example, an 

algorithm found to take ςὲ ὲ τὲ σ time to complete would be described as having a 

complexity of ὕὲ . This is because the higher order term will dominate the other terms for 

sufficiently large values of ὲ. The lower order terms and constant value can therefore be 

ignored. Big-O provides an order of magnitude and can be thought of as a qualitative 

descriptor as much as a quantitative one. 

 

A description and examples of some common Big-O values is now presented. 

 

O(1) 

An algorithm described in this manner will always run within some constant time (sometimes 

called bounded time) regardless of the size of the input. Such algorithms are said to take 

óorder of 1ô, or O(1) time to complete.  

 

While it is possible that two different O(1) algorithms may take significantly different times to 

complete this does not matter. The important point is that we know that O(1) algorithms will 

complete within some constant time. 

 

To take an analogy, letôs say itôs the weekend and you were preparing to do some serious 

study but before you get started you first need to clear your room/desk. The time required to 
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do this work doesnôt depend in any way on the number of subjects you intend to study. It will 

be completed within some constant amount of time regardless of whether you will study two 

or ten subjects. 

 

O(n) 

If the length of time it takes to run an algorithm increases in proportion to the size of the input 

the algorithm is said to run in linear time. Such algorithms have an O(n) complexity. 

 

The linear (sequential) search algorithm used to find some target value (argument) in a list 

that contains ὲ values is a classic example of an ὕὲ algorithm. This is because in the 

worst case scenario every element in the list will have to be examined in order to find the 

target value. These algorithms are characterised by the following loop structure. 

 

for i in range(n):  

 print(i) # this line will be executed n times  

 

Once again it is important to remember that the absolute time is not the important factor. On 

average it will take much less time to search for a value in shorter lists than longer ones. 

Recall, Big-O provides us with an objective classification scheme which can be used to 

compare algorithms based on worst case scenarios.  

 

To continue with our earlier analogy ï let n be the number of subjects you are going to study 

and let us say that you had decided to allocate a fixed amount of time to each subject. It 

makes sense therefore that the more subjects you study the longer it will take to finish your 

study. Twice as many subjects will require twice the amount of time.  

 

O(ὲ) 

Now letôs say that you decided to use a slightly different approach to your study. Instead of 

allocating the same fixed amount of time to each subject you decide to allocate fixed units of 

time to reading individual pages of notes. You start by reading one page for the first subject, 

two for the second, three for the third and so on. By the time you have reached your nth 

subject you will need to read ὲ pages of notes. The amount of time it takes to complete your 

study in this case is known as quadratic time and is written as O(ὲ). 

 

Algorithms of this type are characterised by loops nested to one level. For each of the ὲ 

iterations carried out by the outer loop, the inner loop will perform ὲ iterations of its own. This 
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is illustrated in the snippet of Python code below in which the print statement appears within 

a nested for loop and will be executed ὲ times. 

 

for i in range(n):  

    for j in range(n):  

 print(i, j) # this line will be executed n squared times  

 

The three elementary sort algorithms ï selection sort, insertion sort and bubble sort ï are all 

examples of algorithms whose time complexity is quadratic. Furthermore, it is noteworthy 

that algorithms in this class are impractical to use when it comes to dealing with large 

volumes of data. Just think about it ï if the size of a list doubles it would take four times 

longer to sort; increasing the size of a list threefold will result in a nine-fold increase in time. 

Not to labour the point too much, it would take 100 times longer to sort a list of 1000 items 

than it would to take to sort a list just 10 times smaller. Quadratic time algorithms are simply 

unsustainable. 

 

ὕÌÏÇὲ 

These class of algorithms are said to be logarithmic. For algorithms that have logarithmic 

time complexity it means that as the value n increases, the time complexity of your program 

increases by a logarithmic factor.  

 

Such algorithms are characterised by cutting the size of the input in half in each step as it 

moves towards a solution. Take for example the following analysis of a binary search: 

 

List Size (n) 
Maximum number 
of comparisons (c) 

1 1 

2 2 

4 3 

8 4 

16 5 

32 6 

etc. etc. 

 

As can be seen from the table above the maximum number of comparisons (steps) the 

binary search algorithm needs to perform in order to find some target value just increases by 

one each time the size of the input list is doubled.  
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The relationship between the size of the input (ὲ) and the maximum number of comparisons 

(ὧ) required is given by: 

ὲ  ς  

Therefore,  

ὧ ÌÏÇὲ ρ 

 

So binary search has ὕÌÏÇὲ time complexity which is a very impressive and desirable 

feature for any algorithm to have. More importantly however is the fact that we can use this 

to calculate the maximum number of comparisons it will take to search a list of any size i.e. 

we can guarantee an upper bound. For example a list with ς ρ ὦὭὰὰὭέὲ elements will take 

no more than 31 comparisons. This is very useful information for software designers to have 

at hand when they need to choose the most appropriate algorithm for the system they are 

working on.  

 

ὕὲ ÌÏÇὲ 

When it comes to analysing worst case time complexity of algorithms that sort by using a 

series of head-to-head comparisons, it is a proven fact that the best we can hope to achieve 

is ὕὲ ÌÏÇὲ, also called ñlinearithmicò time. ñLinearithmicò complexity lies somewhere 

between linear and quadratic. It is not an understatement to say that algorithms with this 

class of time complexity result in seismic improvements in performance. 

 

ñLinearithmicò algorithms are characterised by an approach to problem solving known as 

divide-and-conquer. Depending on the particular algorithm there will be ὲ divisions and each 

division will take log ὲ steps to conquer or vice versa. 

 

Two examples of algorithms that fall into this class of time complexity are quicksort and 

merge sort. 

 

Intractable Problems 

Finally, it is worth noting that algorithms can have time complexities that are exponential, 

ὕς) and even worse, factorial, ὕὲȦ. The solution to the Travelling Salesman Problem is 

an example of a factorial time algorithm. Algorithms of this nature are said to be intractable 

as their running time makes them infeasible even for very small values of n. (This is 

evidenced by the values in the rightmost two columns in the table at the top of the next 

page.) 
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Summary Graphs and Tables 

The growth rates in computation time for the common time complexity functions discussed in 

the preceding section are depicted in tabular and graphical8 format below. 

 

N Constant Linear Quadratic Logarithmic Linearithmic Exponential Factorial 

1 1 1 1 1 1 2 1 

2 1 2 4 1 2 4 2 

4 1 4 16 2 8 16 24 

8 1 8 64 3 24 256 40320 

16 1 16 256 4 64 65536 2.09228E+13 

32 1 32 1024 5 160 4294967296 2.63131E+35 

64 1 64 4096 6 384 1.84467E+19 1.26887E+89 

128 1 128 16384 7 896 3.40282E+38 3.8562E+215 

 

 

 

 

 

 

  

                                                           
8 Source: Data Structures and Algorithms in Python (Goorich et. al., Page 122) 




