
National Workshop 6
Leaving Certificate Computer Science

Workshop Overview

Session 1

9:30 - 11:00
Algorithms III – Sorting

Tea/Coffee

11:00 – 11:30

Session 2

11:30 - 13:00
Evaluation & testing

Lunch

13:00 - 14:00

Session 3

14:00 - 16:00
Digital portfolios and CWA video

Key Messages

There are many ways to use

the LCCS specification.

ALTs provide an opportunity

to teach theoretical aspects

of LCCS.

The study of Computers and

Society is one of the

overarching principle of LCCS

Digital technologies can be

used to enhance

collaboration, learning and

reflection.

LCCS can be mediated

through a constructivist

pedagogical approach.

NW6 Session 1
Algorithms III - Sorting

By the end of this session

Participants will have:

• reflected on the definition and characteristics of algorithms, as well as the ubiquitous nature of

algorithms in today’s society.

• developed their conceptual understanding of a variety of sorting algorithms.

• participated in activities to facilitate the effective learning of algorithms in their own classrooms.

LCCS NW6
Introduction to algorithms
(revisited)

“Computer science is the study of computers and algorithmic processes. Leaving Certificate

Computer Science includes how programming and computational thinking can be applied to the

solution of problems, and how computing technology impacts the world around us.”
LCCS Curriculum Specification, page 2

What does the specification say?

S2: Algorithms Learning Outcomes

See also learning outcomes 1.6, 1.7 1.14, 1.22, 2.3, 3.4 and 3.7 … plus others

What is an algorithm?

“An algorithm is a set of rules for getting a specific output from a specific input.

Each step must be so precisely defined that it can be translated into computer

language and executed by machine.”

Finiteness

According to Knuth, an algorithm has five important features:

Definiteness

Input

Output

Effectiveness

Source: Knuth, D The Art of Computer Programming (Vol. 1, Fundamental Algorithms, 3rd ed.)

An algorithm must always terminate after a finite number of steps.

Each step must be precisely defined.

An algorithm has zero or more inputs.

An algorithm has one or more outputs, which have a specified relation to the inputs.

All operations to be performed must be sufficiently basic that they can in principle

be done exactly and in finite length of time by someone using pencil and paper.

Donald Knuth

What is an algorithm?

✔ A way of capturing intelligence and sharing it with others

✔ Provide general solutions to problems

✔ Can be expressed in a variety of different ways

✔ Essential features are correctness and effectiveness

✔ Some problems are so hard that they cannot be solved by algorithms (Computability)

✔ Rule-based algorithms vs. Machine learning algorithms (AI)

✔ Close relationship between algorithms and data structures

“ A step-by-step procedure for solving a problem or accomplishing some end especially by a
computer.”

✔ Common elements include input, processing, output

✔ A sequence of instructions

Merriam-Webster

LCCS NW6
Sorting algorithms: Selection
Sort, Insertion Sort and Bubble
Sort

S2: Algorithms Learning Outcomes

Sorting algorithms

An algorithm that maps the following input/output pair

is called a sorting algorithm:

Input: A list (array), L, that contains n orderable elements:

L[0, 1, …, n - 1]

Output: A sorted permutation of L, called S, such that

S[0] ≤ S[1] ≤ … ≤ S[n – 1].

Simple
(selection)

Sort

Insertion
Sort

Bubble
Sort

Quicksort

Simple sort demonstration

Input:

Required Output:

Simple sort demonstration

https://www.101computing.net/card-sort/

Breakout Activity

Instructions:

1. Individuals read the algorithm provided and develop their

own understanding (5 mins)

2. Each group then discusses and agrees a common

understanding of their assigned algorithm (5 mins)

3. Groups prepare a demonstration/explanation which they

will use to teach others after the breakout (5 mins)

https://www.101computing.net/card-sort/

https://deck.of.cards/

Simple
(selection)

Sort

Insertion
Sort

Bubble
Sort

https://www.101computing.net/card-sort/
https://deck.of.cards/

Groups 1,4,7 Selection Sort Pages 20-24

Groups 2,5,8 Insertion Sort Pages 25-31

Groups 3,6,9 Bubble Sort Pages 32-39

Appoint a chair, a timekeeper, a notetaker and a spokesperson

Breakout Activity

Groups 1,4,7 Selection Sort Pages 20-24

Groups 2,5,8 Insertion Sort Pages 25-31

Groups 3,6,9 Bubble Sort Pages 32-39

Feedback

Sorting – key skills

✓ Lists/For loops

✓ Min/max (if statements… comparison operators)

✓ Swap operation (assignment statement)

✓ Functions

✓ Sorted (built-in function) Vs sort (list method)

Swap operation

Let’s say we wanted to exchange L[2] and L[1]

temp = L[2] 18L 27 15 13 22 15

temp

L[2] = L[1] 18L 27 27 13 22 15

L[1] = temp
18L 15 27 13 22 15

L = [18, 27, 15, 13, 22] 18L 27 15 13 22

0 1 2 3 4

18L 15 27 13 22

Python supports a single statement swap:

L[2], L[1] = L[1], L[2]

Unplugged activity (swap)

The aim is to swap the positions of the black and white pieces.

Pieces can move either by sliding into an adjacent empty square, or by

jumping a single adjacent piece into the empty square immediately beyond.

Correctness

Before implementation begins, it is a good idea to know what we want!

Question: What does the function shown below do?

2-minute movement break

LCCS NW6
Sorting algorithms: Quicksort

Recursion
def linear_search_v6(v, L, index=0) :

 if len(L) != 0:

 if L[0] == v:

 return index

 r = linear_search_v6(v, L[1:], index+1)

 if r != -1:

 return r

 return -1

Sorting algorithms

An algorithm that maps the following input/output pair

is called a sorting algorithm:

Input: A list (array), L, that contains n orderable elements:

L[0, 1, …, n - 1]

Output: A sorted permutation of L, called S, such that

S[0] ≤ S[1] ≤ … ≤ S[n – 1].

Quicksort
A general sorting algorithm devised by Tony Hoare in the late 1950s.

Quicksort: the basic idea

DIVIDE

1. Pick some number p from the list – called the pivot

2. Partition all the data into:
A. The values less than the pivot (call this the left list)
B. The pivot (call this the middle list)
C. The values greater than the pivot (call this the right list)

CONQUER

3. Quicksort the left list (A)

4. Quicksort the right list (B)

5. The answer is left list + middle list + right list

Partitioning

STEP 1. Choose the rightmost element in the list as the pivot

STEP 2. Create three empty lists called left_list, middle_list and right_list

STEP 3. for each key (item) in the list

− if key is < pivot add it to left_list

− if key is == pivot add it to middle_list

− if key is > pivot add it to right_list

Unsorted List

Left sub-list Right sub-list

Initial

Pivot

pLeft

Pivot

def quick_sort(L):

 left_list = []

 middle_list = []

 right_list = []

 # Base case

 if len(L) <=1:

 return(L)

 # Set pivot to the last element in the list

 pivot = L[len(L)-1]

 # Iterate through all elements (keys) in L

 for key in L:

 if key < pivot:

 left_list.append(key)

 elif key == pivot:

 middle_list.append(key)

 else:

 right_list.append(key)

 # Repeat the quicksort on the sub-lists and combine the results

 return quick_sort(left_list) + middle_list + quick_sort(right_list)

What features of recursion
can you can see in this code?

88 46 25 11 18 12 22 22 is the pivotExample
pivot = L[len(L)-1]

88 46 25 11 18 12 22

11 18 12 88 46 25

left_list

22

right_listmiddle_list

INPUT (unsorted list)

88 46 25 11 18 12 22

11 18 12 88 46 25

Now quicksort left_list

22

INPUT (unsorted list)

88 46 25 11 18 12 22

11 18 12 88 46 2522

12 is the pivot

INPUT (unsorted list)

88 46 25 11 18 12 22

11 18 12 88 46 2522

11 1812

INPUT (unsorted list)

88 46 25 11 18 12 22

11 18 12 88 46 2522

11 1812

Now quicksort left_list

INPUT (unsorted list)

88 46 25 11 18 12 22

11 18 12 88 46 2522

11 1812

11

Now quicksort left_list

Base case: len(L) <= 1 so return 11

INPUT (unsorted list)

88 46 25 11 18 12 22

11 18 12 88 46 2522

11 1812

11

Now quicksort right_list

INPUT (unsorted list)

88 46 25 11 18 12 22

11 18 12 88 46 2522

11 1812

11

Now quicksort right_list

18

Base case: len(L) <= 1 so return 18

INPUT (unsorted list)

88 46 25 11 18 12 22

11 18 12 88 46 2522

11 1812

11 18

Result is left + middle + right so return 11 12 18

INPUT (unsorted list)

88 46 25 11 18 12 22

11 18 12 88 46 2522

11 1812

11 18

11 12 18

INPUT (unsorted list)

88 46 25 11 18 12 22

11 18 12 88 46 2522

11 1812

11 18

11 12 18

Now quicksort right_list

INPUT (unsorted list)

88 46 25 11 18 12 22

11 18 12 88 46 2522

11 1812

11 18

11 12 18

25 is the pivot

INPUT (unsorted list)

Now quicksort right_list

88 46 25 11 18 12 22

11 18 12 88 46 2522

11 1812

11 18

11 12 18

88 4625

Partition around 25

INPUT (unsorted list)

88 46 25 11 18 12 22

11 18 12 88 46 2522

11 1812

11 18

11 12 18

88 4625

Now quicksort left_list

INPUT (unsorted list)

88 46 25 11 18 12 22

11 18 12 88 46 2522

11 1812

11 18

11 12 18

88 4625

INPUT (unsorted list)

Now quicksort left_list

88 46 25 11 18 12 22

11 18 12 88 46 2522

11 1812

11 18

11 12 18

88 4625

Base case: len(L) <= 1 so return []

INPUT (unsorted list)

Now quicksort left_list

88 46 25 11 18 12 22

11 18 12 88 46 2522

11 1812

11 18

11 12 18

88 4625

INPUT (unsorted list)

Now quicksort right_list

88 46 25 11 18 12 22

11 18 12 88 46 2522

11 1812

11 18

11 12 18

88 4625

8846

Partition around 46

INPUT (unsorted list)

Now quicksort right_list

88 46 25 11 18 12 22

11 18 12 88 46 2522

11 1812

11 18

11 12 18

88 4625

8846

Partition around 46

Now quicksort left_list

INPUT (unsorted list)

Now quicksort right_list

88 46 25 11 18 12 22

11 18 12 88 46 2522

11 1812

11 18

11 12 18

88 4625

Now quicksort right_list

8846

Partition around 46

Now quicksort left_list

Base case: len(L) <= 1 so return []

INPUT (unsorted list)

88 46 25 11 18 12 22

11 18 12 88 46 2522

11 1812

11 18

11 12 18

88 4625

8846

Now quicksort right_list

INPUT (unsorted list)

88 46 25 11 18 12 22

11 18 12 88 46 2522

11 1812

11 18

11 12 18

88 4625

8846

Now quicksort right_list

Base case: len(L) <= 1 so return 88

88

INPUT (unsorted list)

88 46 25 11 18 12 22

11 18 12 88 46 2522

11 1812

11 18

11 12 18

88 4625

8846

88

Result is left + middle + right so return 46 88

46 88

INPUT (unsorted list)

88 46 25 11 18 12 22

11 18 12 88 46 2522

11 1812

11 18

11 12 18

88 4625

8846

88

Result is left + middle + right so return 25 46 88

46 88

25 46 88

88 46 25 11 18 12 22

11 18 12 88 46 2522

11 1812

11 18

11 12 18

88 4625

8846

88

46 88

25 46 88

11 12 18 22 25 46 88OUTPUT (sorted list)

INPUT (unsorted list)

85 24 63 45 17 31 5096

left list right listPartition around 50

Perform a quicksort on the following:

85 24 63 45 17 31 50

denotes empty list

96

24 45 31 85 63 96

45

85

63 85 96

left list

left list left list

left list

right listright list

right list

Partition around 50

Partition around 31 Partition around 96

Partition around 63

17

24 17

24

left list right list

Partition around 17

85 63

17 24

17 24 4531

63 85

17 24 31 45 50 63 9685

Sample Solution

LCCS Sample Paper Q15 (d)

1 2 3 4 5 6 87

left list right list

Exercise

Investigate why this scenario leads to the worst-case performance for the quicksort

Tea/Coffee

Session 2

Evaluation
and Testing

By the end of this session participants
will have:

• Examined the importance of testing in the software

development cycle.

• Experienced real-life testing scenarios.

• Developed test plans and test cases for a variety of situations.

• Investigated and experienced test-driven development.

LCCS Learning Outcomes

But Also

 Design and Developing L.O. 1.19

 Computational Thinking L.O.s 1.1 - 1.9

 Computers and Society L.O.s 1.11

 Computers and Society L.O.s 1.22

 Computer Science in Practice L.O.s 3.2 – 3.14

1. Introduction to
Testing

Why is Software Testing important?

5 Minutes

8512 9760

Why test Software?

Some interesting scenarios

MS Word 97 – French version
– what happened? Boeing

The hot key E – went to
Envoyer (Send) and users
thought it was Edit with
disastrous consequences

Windows XP

Activity 1
Reflecting on Software Testing.

Read Evaluate testing the mini rocket and note any thoughts you have on how you would carry

out any tests.

You might consider:

• Can I test everything at the same time?

• Would I prioritise anything when testing?

• Are there any testing suggestions I would add/remove from the list?

• Is it important to have a testing strategy?

7 Minutes

P 2

Testing the mini-rocket

Appoint a chair, a

timekeeper, a notetaker

and a spokesperson

Feedback

Testing the mini-rocket

What did you include in your Test plan?

How to Prepare an Effective Test Plan
Template?

A Test Plan is like a blueprint of how the testing activity is going to take place in

a project ensuring that a system is fully tested, and any outcomes are documented.

Test plans are made up of

• Who is testing

• The reason for the test

• The Test data

• The expected outcome

• The actual result

https://youtu.be/oD8Y2HJO7kQ?si=sEJ-

bsr1NeRVnE5n

What is a Test Case?

Test Cases can be simply determined as conditions that a tester
will check whether the code runs perfectly or not.

https://www.geeksforgeeks.org/types-software-testing/

Tester ID Description of

what is being

tested

Test Data Expected

Result

Actual Result Test Passed

Y/N

Norman Whiteside’s goal in the FA
Cup 1985

http://www.youtube.com/watch?v=HaoBRMzvDXc

Testers are similar to defenders

Defender’s Plan

No

Is he

waiting

for a

passyes
Stay close

No

(www.systemsemantics.com)

What is Software Testing?

“Testing shows the presence, not the

absence, of bugs”… All that tests can do,

after sufficient testing effort, is allow us to

deem a program to be correct enough for our

purposes.”
Clean Architecture: A

Craftsman's Guide to Software

Structure and Design (Robert

C. Martin Series) 1st Edition

2. Software Testing

Testing the Linear Search Algorithm

more?
N

Start

idx = 0

match?

idx = idx + 1

Y

return -1

return idx

Y

N

21 17 -1 26 22 -5 24

0 1 2 3 4 5 6idx

values

Is searching for 26 a sufficient test of

this algorithm?

Take a moment to note your answer in

the booklet.

P 7

Activity 2

7 Minutes

P 8

MS Word

Test the functionality of the Shading

Tab in the Borders and Shading dialog

box

Google Document

Test the functionality of the Border Colour

and Cell Background using Table

Properties.

investigate testing the functionality of the Shading

Tab in the Borders and Shading dialog box in a

MS Word document/ Border Colour and Cell

Background in a Google Document by testing

several possible combinations of colours, border

size and types.

Consider the questions:

• Can I test every possible combination of

colours, border size and types?

• Do I need to prioritise what I need to test and if

so, how would I do that?

Feedback

3. Types of Testing/
Testers’ roles

Activity 3: Home Expert Activity

1. Functional v non-functional testing

2. Unit v Integration testing

3. System v User Acceptance Testing

4. White v Black box testing

5. Alpha v Beta Testing

6. Usability v Security Testing

7. Regression v Smoke Testing

8. Accessibility v Stress Testing

9. Other
15 Minutes

P 10

Investigating types of testing.

You could consider what the

testing involves with an

example and who carries out

the test.

Appoint a chair, a timekeeper, a notetaker and a spokesperson

Feedback

https://stratoflow.com/types-of-software-testing/

https://www.geeksforgeeks.org/types-software-testing/

https://www.geeksforgeeks.org/types-software-testing/

4. Test Driven
Development
(TDD)

Test Driven Development (TDD)
TDD usually follows the "Red-Green-Refactor" cycle:

1. Add a test to the test suite

2. (Red) Run all the tests to ensure the new test

fails

3. (Green) Write just enough code to get that single

test to pass

4. Run all tests

5. (Refactor) Improve the initial code while keeping

the tests green

6. Repeat

“Fake it till you make it” (Kent Blake): Write only code
needed to pass tests.

https://testdriven.io/

TDD & Software Development Models

• Does TDD fit in the Agile framework?

• Is TDD the same as Agile development?

• Is Waterfall development relevant?

• How does the role of testing change, according to these
methodologies?

5 Minutes

Feedback

5. Reflection

Reflection

• From what we covered today, what
could you bring to your classroom?

• How could you incorporate testing into
future ALTS?

P 12

Resources

https://www.brighthubpm.com/monitoring-projects/104432-software-testing-a-simple-five-stage-model/?utm_content=cmp-true
https://www.compsci.ie/
https://www.geeksforgeeks.org/types-software-testing/
https://medium.com/@case_lab/how-to-create-a-test-plan-77874e88888f

Lunch

1-2

NW6 Session 3
Digital portfolios
& Coursework video

By the end of this session
Participants will have been enabled to:

• develop an understanding of digital portfolios

• recognise how the use of Digital Portfolios is supported by educational

policy

• make the link with Digital Portfolios and the LCCS subject including a

‘show and tell’ from teachers

• develop a shared understanding of the video component for the LCCS

Coursework Assessment

• access a range of software relevant to the video production process

Digital Portfolios
for ALTs

Digital Strategy for Schools to 2027

“Using digital technologies actively and working
with other learners promotes and encourages
active learning, problem solving, critical thinking
and communication skills, all of which are vital for
the world we live in.”

Digital Strategy for Schools to 2027, 1.3 A Learner-Centred Approach

Digital Strategy for Schools to 2027

“The use of digital portfolios in teaching and
learning has also grown, providing a platform for
student centred learning, particularly in junior
cycle and Transition Year.”

Digital Strategy for Schools to 2027, 1.13 Assessment

Leaving Certificate Computer Science

“The output from each task is a computational
artefact and a concise individual report outlining
its development.”

“In the report, students outline where and how the
core concepts were employed. The structure of
the reports should reflect the design process.”

“As students progress, reports should become
detailed and individual.”

“Reports are collected in a digital portfolio along
with the computational artefact.”

Developing Key Skills

How can the Key Skills of Senior Cycle be developed through the use of digital

portfolios?

Digital Portfolios: Warm-up Activity

URL = www.menti.com

Code = 54 13 84 7

How can the Key Skills of Senior Cycle be developed through

the use of digital portfolios?

What is your current understanding of digital portfolios?

What is a Portfolio?
“A portfolio - paper or electronic - is a
collection of evidence that is gathered
together to show a person’s learning
journey over time and to demonstrate
their abilities.

In that way, people compiling portfolios
are active participants in their own
learning.”

(EUFolio, 2015, p9)
https://eufolioresources.files.wordpress.com/2015/03/eportfolio-implementation-guide_en.pdf

One word

Many meanings

https://eufolioresources.files.wordpress.com/2015/03/eportfolio-implementation-guide_en.pdf

Who was the first famous folio keeper?

Defining Digital Portfolios

“Digital portfolios are student-owned dynamic digital workspaces

whereby students can capture their learning, their ideas, access

their collections of work, reflect on their learning, share it, set

goals, seek feedback and showcase their learning and

achievements.”

NCCA, 2013

Benefits of Digital Portfolios

Evidence of
Learning

Maintenance Feedback

Skill
Development

Reflection

Assessment Artefacts
Portability and

Sharing

Access

Three Levels of Digital Portfolio

Vestibulum congue

Storage

WorkspaceShowcase

Digital

Portfolio

Using Digital Portfolios to support
Formative Assessment

EUFolio (2015)

Adapted from: Assessment for Learning and ePortfolios (2012)

Key Message

“Reflections and relationships are at the heart and soul of digital
portfolios…. not the technology.”

Dr. Helen Barrett

Breakout Task

In your breakout group, discuss and plan a

strategy for incorporating digital portfolios into

the learning plan for your LCCS classroom.

Feedback

In your breakout group, discuss and plan a

strategy for incorporating digital portfolios into

the learning plan for your LCCS classroom.

Final Tips for LCCS Digital Portfolio

• Use the existing platform that is in your school already - you can

combine it with other tools or platforms for code if needed.

• Keep it simple and start small first.

• Discuss with students what they are doing & WHY!

• Show a finished one to help students visualise it (current 6th

years can be shown to 5th years).

Final Tips for LCCS Digital Portfolio

• Make links with Transition Year if they have completed a

portfolio already.

• Encourage regular updating and reflection on each section/task/

etc.

• Share students’ digital portfolios so they can see each other's
work.

• Share with the wider school community and at open days etc to
showcase LCCS at your school.

Resources – Digital Portfolios

https://www.compsci.ie/
https://eportfolioireland.wordpress.com/

https://www.oidetechnologyineducation.ie/courses-practice/

Resources – Digital Portfolios

https://www.scoilnet.ie/tools-for-teachers/articles/eportfolio/

Resources – Digital Portfolios

https://www.scoilnet.ie/tools-for-teachers/articles/eportfolio/

LCCS
Coursework Video

You must embed a video presentation

showing the artefact in operation.

The video must not be more than 5 minutes

in duration. In deciding the content of your

video, you should refer to the description of

the task.

The video should show all the features of the

artefact that you want the examiner to be

aware of, as this is the main piece of

evidence on which the examiner will judge

the quality of the artefact.

All content of the report (images, video or other) must

comply with the school’s Acceptable Usage Policy and

with General Data Protection Regulation (GDPR).

The video should be no more than 1GB in size.

This readily can be achieved by using standard

definition (720 x 480) at 25 frames per second

and a suitable commonly used format.

The video should demonstrate the

quality of the user interface and the full

functionality of the artefact.

Coursework Sample Brief

What would you use to record and edit video

with your students?

Deciding the Coursework Video Tool

• There is no set tool to use - it is your choice.

• It will depend on:

• Context of your own classroom.

• Technology already available in your school (equipment and process

for CBAs).

• Your own experience with tools.

• Student’s view or previous experience.

Planning Tips for the Video

• Planning is essential.

• Use a storyboard.

• Use the native video capture on mobile or tablet device.

• Tripod is good for some shooting.

• Consider music / voiceover / subtitles carefully.

• Consider light when shooting.

• Chat to other teachers in your school for assistance.

• Give guidance but allow students to take ownership of video.

Planning Tips for the Video

• Record video throughout the process

• Save video files/images/etc. regularly

• Gather all your assets in one place before editing

• Exporting edited video can take a long time

• Allow plenty of time for editing and finishing touches

• Videos may not always work - use VLC (videolan.org) to check if

the video is still there and usable

• Allow plenty of time for editing and finishing touches

• If your video is too big, use HandBrake to shrink it

• Allow plenty of time for editing and finishing touches

Recording & Editing Video

PowerPoint Screen Record

Clipchamp

Filmora

https://clipchamp.com/en/

Final fixes - Handbrake

For putting the finishing touches to your

video:

- Resolution

- Filetype

- Crop (top/bottom/left/right)

- Trim (start/finish)

- Reducing file size

Coursework
Video Demo

Resources – Video for Coursework

https://fisfilmproject.ie/

https://fisfilmproject.ie/

https://fisfilmproject.ie/teacher-resources/

Resources – Video for Coursework

https://fisfilmproject.ie/teacher-resources/

	Default Section
	Slide 1: National Workshop 6
	Slide 2: Workshop Overview
	Slide 3: Key Messages
	Slide 4: NW6 Session 1
	Slide 5: By the end of this session
	Slide 6: LCCS NW6
	Slide 7: What does the specification say?
	Slide 8: S2: Algorithms Learning Outcomes
	Slide 9: What is an algorithm?
	Slide 10: What is an algorithm?
	Slide 11: LCCS NW6
	Slide 12: S2: Algorithms Learning Outcomes

	Untitled Section
	Slide 13: Sorting algorithms
	Slide 14: Simple sort demonstration
	Slide 15: Simple sort demonstration
	Slide 16: Breakout Activity
	Slide 17: Breakout Activity
	Slide 18: Feedback
	Slide 19: Sorting – key skills
	Slide 20: Swap operation
	Slide 21: Unplugged activity (swap)
	Slide 22: Correctness
	Slide 23: 2-minute movement break
	Slide 24: LCCS NW6
	Slide 25: Recursion
	Slide 26: Sorting algorithms
	Slide 27: Quicksort: the basic idea
	Slide 28: Partitioning
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60: Session 2
	Slide 61: By the end of this session participants will have:
	Slide 62: LCCS Learning Outcomes
	Slide 63: 1. Introduction to Testing
	Slide 64: Why is Software Testing important?
	Slide 65: Why test Software?
	Slide 66: Activity 1 Reflecting on Software Testing.
	Slide 67: Feedback
	Slide 68: How to Prepare an Effective Test Plan Template?
	Slide 69: What is a Test Case?
	Slide 70: Norman Whiteside’s goal in the FA Cup 1985
	Slide 71: Testers are similar to defenders
	Slide 72
	Slide 73: What is Software Testing?
	Slide 74: 2. Software Testing
	Slide 75: Testing the Linear Search Algorithm
	Slide 76: Activity 2
	Slide 77: Feedback
	Slide 78: 3. Types of Testing/ Testers’ roles
	Slide 79: Activity 3: Home Expert Activity
	Slide 80: Feedback
	Slide 81
	Slide 82
	Slide 83: 4. Test Driven Development (TDD)
	Slide 84: Test Driven Development (TDD)
	Slide 85: TDD & Software Development Models
	Slide 86: Feedback
	Slide 87: 5. Reflection
	Slide 88: Reflection
	Slide 89: Resources
	Slide 90: Lunch
	Slide 91: NW6 Session 3
	Slide 92: By the end of this session
	Slide 93: Digital Portfolios for ALTs
	Slide 94: Digital Strategy for Schools to 2027
	Slide 95: Digital Strategy for Schools to 2027
	Slide 96: Leaving Certificate Computer Science
	Slide 97: Developing Key Skills
	Slide 98: Digital Portfolios: Warm-up Activity
	Slide 99: What is a Portfolio?
	Slide 100: Who was the first famous folio keeper?
	Slide 101: Defining Digital Portfolios
	Slide 102: Benefits of Digital Portfolios
	Slide 103: Three Levels of Digital Portfolio
	Slide 104: Using Digital Portfolios to support Formative Assessment
	Slide 105: Key Message
	Slide 106: Breakout Task
	Slide 107: Feedback
	Slide 108: Final Tips for LCCS Digital Portfolio
	Slide 109: Final Tips for LCCS Digital Portfolio
	Slide 110: Resources – Digital Portfolios
	Slide 111
	Slide 112: Resources – Digital Portfolios
	Slide 113: LCCS Coursework Video
	Slide 114
	Slide 115
	Slide 116
	Slide 117: Deciding the Coursework Video Tool
	Slide 118: Planning Tips for the Video
	Slide 119: Planning Tips for the Video
	Slide 120: Recording & Editing Video
	Slide 121: Final fixes - Handbrake
	Slide 122: Coursework Video Demo
	Slide 123: Resources – Video for Coursework
	Slide 124: Resources – Video for Coursework
	Slide 125

