
Session 2

Evaluation and Testing

Contents
1: Introduction to Testing ... 2

Activity 1: Reflecting on Software Testing. ... 2

Some interesting scenarios ... 4

2: Software Testing ... 6

Testing the Linear Search algorithm ... 7

Activity 2: Testing the functionality of the Shading Tab in the Borders and Shading dialog box in a

MS Word document/ Border Colour and Cell Background using Table Properties in a Google

Document. .. 8

3: Types of Testing / Testers’ roles in different software development models 10

Activity 3: Home Expert Activity - Investigating types of testing. ... 10

4: Test Driven Development (TDD) ... 11

Looking at TDD / Agile / Waterfall Software Development Models ... 11

5: Reflection .. 12

6: Appendices: ... 13

Glossary of terms used in Software Testing ... 13

Boeing’s Software Testing Problem .. 27

Page 2 of 28

1: Introduction to Testing

Activity 1: Reflecting on Software Testing.

Read Evaluate testing the mini rocket below and note any thoughts you have on how

you would carry out any tests. You might consider:

• Can I test everything at the same time?

• Would I prioritise anything when testing?

• Are there any testing suggestions I would add/remove from the list?

• Is it important to have a testing strategy?

Evaluate testing the mini rocket

Imagine testing a product such as the one shown – a STEM toy, in which the red

‘rocket’ is supposed to fly out of its holder when a person blows across the top.

If you were to test this toy, how would you do it and how long would it take? It is

tempting perhaps to answer that, as you just want to test if it works, the test might

consist of blowing across the top as required and if it functions as expected, your

testing is over in 5 seconds.

However, you were not given full requirements for your test, and you may want to do

some or all of the following:

1. Assess the power required for the toy to function properly.

2. Who could produce such power. Possibly estimate an age where you could

reasonably assume that the person could manage to do this.

3. Analyse any potential dangers in the product? How could these be tested? Is

there a danger of a young child swallowing this?

Page 3 of 28

4. Test if the paint on the rocket is poisonous?

5. Evaluate the size / raw materials / colour scheme / shape and model alternatives,

which could be used in future versions.

6. Could the test process be done earlier / integrated into the manufacture of the

toy.

Notes:

Page 4 of 28

In the case of software, testing involves much more than just a cursory check on

whether something works or not. Consider the scores of terms in the glossary from

Ad-hoc testing to White box testing, and it becomes easy to see that this is a huge

field. Whether in industry, college or school, the testing process can involve evaluating

the software; making suggestions for future design; finding inefficiencies in the code;

discovering unusual situations where the code doesn’t work; considering the user’s

experience; making suggestions about the look and feel of the program or app.

Some interesting scenarios
Aircraft manufacturer Boeing suffered losses

of millions of dollars, when they tried to cut

costs on their software testing. A problem

where the nose of the aircraft went too high

was overcorrected in a solution which was

not properly tested. More details are in a

Bloomberg article in the appendices.

The amount of bugs in large programs is

enormous and lead to the tester having to

make decisions of how to approach a

project. In Windows XP for example,

there were 65,000 bugs found before the

product went to market. And these were

just the ones found.

Some of the highest paid people in the IT industry are testers, as they have the skill

of, not just being creative, but being able to analyse the work of software developers.

To give an analogy from sport, testers are

similar to defenders – they have to do an

analysis of each attacker they will be facing,

and develop a plan, one of which is shown

here. The attackers, on the other hand,

Page 5 of 28

doesn’t need to do this level of research every game.

The software tester has a lot of responsibility. Consider one of the popular word

processing programs. A small mistake in, for example, a short-cut key, could have

disastrous consequences for thousands of end users.

The cost of fixing Bugs which are not found in time is huge when compared from a

bug that is found in the early stages, as can be seen in the next diagram:

www.systemsemantics.com

Page 6 of 28

2: Software Testing

Recent changes to software development methodologies are reflected in a changing

role for software testers.

In the traditional Waterfall model

(and other staged models) the

testing process takes place at a

particular point in the software

development cycle.

Two more recent software development methodologies are Test-driven

development (TDD) and Agile development. In TDD, the test cases are written

before any coding is done. This has led to a shift of roughly one tester for every

eight developers to one tester for three developers. Microsoft, by the way, generally

had a one-to one ratio, but that was due to the huge amount of localisation required

for their products.

In Agile Software Development, the distinct

stages have been removed and testers are

involved right from the start, in a constant

dialogue with clients, designers and project

managers. The role of the tester has been

enhanced and made more central.

 pininterest.com

karthiksangi.wordpress.com

Page 7 of 28

Testing the Linear Search algorithm

Notes:

Is searching for 26 a sufficient test of this algorithm?

Explain your answer.

Page 8 of 28

Activity 2: Testing the functionality of the Shading Tab in the Borders and

Shading dialog box in a MS Word document/ Border Colour and Cell

Background using Table Properties in a Google Document.

Create a table with 2 columns and a number of rows in MS

Word/in a Goggle Doc. Like the table here.

Using the table properties (see below) can you investigate testing the functionality of

the Shading Tab in the Borders and Shading dialog box in a MS Word document/

Border Colour and Cell Background in a Google Document by testing several

possible combinations of colours, border size and types.

Consider the questions:

• Can I test every possible combination of colours, border size and types?

• Do I need to prioritise what I need to test and if so, how would I do that?

Note your thoughts below.

MS Word

Test the functionality of the Shading

Tab in the Borders and Shading dialog

box

Google Document

Test the functionality of the Border Colour

and Cell Background using Table

Properties.

Page 9 of 28

In this Breakout Activity, you are asked to test the Shading tab of the Borders and

Shading dialogue box or the Border Colour and Cell Background using Table

Properties in a Google Document.. With the thousands of different colours and

hundreds of different styles of table, you could be left with millions of test cases,

which would be impossible to carry out in a reasonable time. So, the tester will often

use heuristics to decide what would and wouldn’t be included in the test plan.

Notes

Page 10 of 28

3: Types of Testing / Testers’ roles in different software

development models

Activity 3: Home Expert Activity - Investigating types of testing.

While investigating the different types of testing you could consider what the testing involves

with an example and who carries out the test. Write your findings below.

1. Functional v non-functional testing

2. Unit v Integration testing

3. System v User Acceptance Testing

4. White v Black box testing

5. Alpha v Beta Testing

6. Usability v Security Testing

7. Regression v Smoke Testing

8. Accessibility v Stress Testing

9. Other

Notes:

Page 11 of 28

4: Test Driven Development (TDD)

Looking at TDD / Agile / Waterfall Software Development Models

Investigate and answer the following questions:

• Does TDD fit in the Agile framework?

• Is TDD the same as Agile development?

• Is Waterfall development relevant?

• How does the role of testing change, according to these methodologies?

Notes:

Page 12 of 28

5: Reflection

From what we covered today, what could you bring to your classroom?

How could you incorporate testing into future ALTS?

Notes:

End

Page 13 of 28

6: Appendices:

Glossary of terms used in Software Testing

A

Ad hoc testing

Testing carried out informally without test cases or other written test instructions.

Agile development

A development method that emphasizes working in short iterations. Automated testing is

often used. Requirements and solutions evolve through close collaboration between team

members that represent both the client and supplier.

Alpha testing

Operational testing conducted by potential users, customers, or an independent test team

at the vendor’s site. Alpha testers should not be from the group involved in the

development of the system, in order to maintain their objectivity. Alpha testing is

sometimes used as acceptance testing by the vendor.

Anomaly

Any condition that deviates from expectations based on requirements specifications, design

documents, standards etc. A good way to find anomalies is by testing the software.

B

Beta testing

Test that comes after alpha tests, and is performed by people outside of the organization

that built the system. Beta testing is especially valuable for finding usability flaws and

configuration problems.

Bespoke software:
Software developed specifically for a set of users or customers. The opposite is off-the-shelf

software.

Big-bang integration

An integration testing strategy in which every component of a system is assembled and

tested together; contrast with other integration testing strategies in which system

components are integrated one at a time.

Black box testing

Testing in which the test object is seen as a “black box” and the tester has no knowledge of

its internal structure. The opposite of white box testing.

Bottom-up integration

An integration testing strategy in which you start integrating components from the lowest

level of the system architecture. Compare to big-bang integration and top-down integration.

Page 14 of 28

Boundary value analysis

A black box test design technique that tests input or output values that are on the edge of

what is allowed or at the smallest incremental distance on either side of an edge. For

example, an input field that accepts text between 1 and 10 characters has six boundary

values: 0, 1, 2, 9, 10 and 11 characters.

Bug

A slang term for fault, defect, or error. Originally used to describe actual insects causing

malfunctions in mechanical devices that predate computers. The International Software

Testing Qualifications Board (ISTQB) glossary explains that “a human being can make an

error (mistake), which produces a defect (fault, bug) in the program code, or in a document.

If a defect in code is executed, the system may fail to do what it should do (or do something

it shouldn’t), causing a failure. Defects in software, systems or documents may result in

failures, but not all defects do so.”

C

Capture/playback tool

See record and playback tool.

CAST

A general term for automated testing tools. Acronym for computer-aided software testing.

Change request

A type of document describing a needed or desired change to the system.

Checklist

A simpler form of test case, often merely a document with short test instructions (“one-

liners”). An advantage of checklists is that they are easy to develop. A disadvantage is that

they are less structured than test cases. Checklists can complement test cases well. In

exploratory testing, checklists are often used instead of test cases.

Client

The part of an organization that orders an IT system from the internal IT department or

from an external supplier/vendor. See also supplier.

Code coverage

A generic term for analysis methods that measure the proportion of code in a system that is

executed by testing. Expressed as a percentage, for example, 90 % code coverage.

Code review

See Review.

Code standard

Description of how a programming language should be used within an organization. See also

naming standard.

https://reqtest.com/testing-blog/what-is-boundary-value-analysis-and-equivalence-partitioning/

Page 15 of 28

Compilation

The activity of translating lines of code written in a human-readable programming language

into machine code that can be executed by the computer.

Component

The smallest element of the system, such as class or a DLL.

Component testing

Test level that evaluates the smallest elements of the system. See also component. Also

known as unit test, program test and module test.

Configuration management

Routines for version control of documents and software/program code, as well as managing

multiple system release versions.

Configuration testing

A test to confirm that the system works under different configurations of hardware and

software, such as testing a website using different browsers.

Context-driven testing

Testing which makes use of debugging techniques inspired by real-world usage conditions. It

is a method of testing which encourages testers to develop testing opportunities based on

the specific details of any given situation.

D

Daily build

A process in which the test object is compiled every day in order to allow daily testing.

While it ensures that defect reports are reported early and regularly, it requires automated

testing support.

Debugging

The process in which developers identify, diagnose, and fix errors found. See also bug and

defect.

Decision table

A test design and requirements specification technique. A decision table describes the

logical conditions and rules for a system. Testers use the table as the basis for creating test

cases.

Defect

A flaw in a component or system that can cause the component or system to fail to perform

its required function. A defect, if encountered during execution, may cause a failure of the

component or system.

Defect report

A document used to report a defect in a component, system, or document. Also known as

an incident report.

Page 16 of 28

Deliverable

Any product that must be delivered to someone other than the author of the product.

Examples of deliverables are documentation, code and the system.

Desk checking

A static testing technique in which the tester reads code or a specification and “executes” it

in his mind.

Document review

See review.

Driver

See test driver.

Dynamic testing

Testing performed while the system is running. Execution of test cases is one example.

E

End-to-end testing

Testing used to test whether the performance of an application from start to finish

conforms with the behaviour that is expected from it. This technique can be used to identify

system dependencies and confirm the integrity of data transfer across different system

components remains.

Entry criteria

Criteria that must be met before you can initiate testing, such as that the test cases and test

plans are complete.

Error

A human action that produces an incorrect result.

Error description

The section of a defect report where the tester describes the test steps he/she performed,

what the outcome was, what result he/she expected, and any additional information that

will assist in troubleshooting.

Error guessing

Experience-based test design technique where the tester develops test cases based on

his/her skill and intuition, and experience with similar systems and technologies.

Execute

Run, conduct. When a program is executing, it means that the program is running. When

you execute or conduct a test case, you can also say that you are running the test case.

Exhaustive testing

A test approach in which you test all possible inputs and outputs.

Exit criteria

Criteria that must be fulfilled for testing to be considered complete, such as that all high-

Page 17 of 28

priority test cases are executed, and that no open high-priority defect remains. Also known

as completion criteria.

Expected result

A description of the test object’s expected status or behaviour after the test steps are

completed. Part of the test case.

Exploratory testing

A test design technique based on the tester’s experience; the tester creates the tests while

he/she gets to know the system and executes the tests.

External supplier

A supplier/vendor that doesn’t belong to the same organization as the client/buyer. See also

internal supplier.

Extreme programming

An agile development methodology that emphasizes the importance of pair programming,

where two developers write program code together. The methodology also implies frequent

deliveries and automated testing.

F

Factory acceptance test

Acceptance testing carried out at the supplier’s facility, as opposed to a site acceptance test,

which is conducted at the client’s site.

Failure

Deviation of the component or system under test from its expected result.

Fault Injection

A technique used to improve test coverage by deliberately inserting faults to test different

code paths, especially those that handle errors and which would otherwise be impossible to

observe.

Formal review

A review that proceeds according to a documented review process that may include, for

example, review meetings, formal roles, required preparation steps, and goals. Inspection is

an example of a formal review.

Functional integration

An integration testing strategy in which the system is integrated one function at a time. For

example, all the components needed for the “search customer” function are put together

and tested one by one.

Functional testing

Testing of the system’s functionality and behaviour; the opposite of non-functional testing.

G

https://reqtest.com/testing-blog/test-coverage-metrics/
https://reqtest.com/testing-blog/functional-vs-non-functional-testing/

Page 18 of 28

Gray-box testing

Testing which uses a combination of white box and black box testing techniques to carry out

software debugging on a system whose code the tester has limited knowledge of.

I

IEEE 829

An international standard for test documentation published by the IEEE organization. The

full name of the standard is IEEE Standard for Software Test Documentation. It includes

templates for the test plan, various test reports, and handover documents.

Impact analysis

Techniques that help assess the impact of a change. Used to determine the choice and

extent of regression tests needed.

Incident

A condition that is different from what is expected, such a deviation from requirements or

test cases.

Independent testing

A type of testing in which testers’ responsibilities are divided up in order to maintain their

objectivity. One way to do this is by giving different roles the responsibility for various tests.

You can use different sets of test cases to test the system from different points of view.

Informal review

A review that isn’t based on a formal procedure.

Installation test

A type of test meant to assess whether the system meets the requirements for installation

and uninstallation. This could include verifying that the correct files are copied to the

machine and that a shortcut is created in the application menu.

Integration testing

A test level meant to show that the system’s components work with one another. The goal

is to find problems in interfaces and communication between components.

Internal supplier

Developer that belongs to the same organization as the client. The IT department is usually

the internal supplier. See also external supplier.

ISTQB

International Software Testing Qualifications Board. ISTQB is responsible for international

programs for testing certification.

Iteration

A development cycle consisting of a number of phases, from formulation of requirements to

delivery of part of an IT system. Common phases are analysis, design, development, and

testing. The practice of working in iterations is called iterative development.

L

Page 19 of 28

Load testing

A type of performance testing conducted to evaluate the behaviour of a component or

system with increasing load, e.g. numbers of concurrent users and/or numbers of

transactions. Used to determine what load can be handled by the component or system.

See also performance testing and stress testing.

M

Maintainability

A measure of how easy a given piece of software code is to modify in order to correct

defects, improve or add functionality.

Maintenance

Activities for managing a system after it has been released in order to correct defects or to

improve or add functionality. Maintenance activities include requirements management,

testing, development amongst others.

Module testing

See component testing.

N

Naming standard

The standard for creating names for variables, functions, and other parts of a program. For

example, strName, sName and Name are all technically valid names for a variable, but if you

don’t adhere to one structure as the standard, maintenance will be very difficult.

Negative testing

A type of testing intended to show that the system works well even if it is not used

correctly. For example, if a user enters text in a numeric field, the system should not crash.

Non-functional testing

Testing of non-functional aspects of the system, such as usability, reliability, maintainability,

and performance.

NUnit

An open source framework for automated testing of components in Microsoft .Net

applications.

O

Open source

A form of licensing in which software is offered free of charge. Open source software is

frequently available via download from the internet, from www.sourceforge.net for

example.

Operational testing

Tests carried out when the system has been installed in the operational environment (or

simulated operational environment) and is otherwise ready to go live. Intended to test

Page 20 of 28

operational aspects of the system, e.g. recoverability, co-existence with other systems and

resource consumption.

P

Pair programming

A software development approach where two developers sit together at one computer

while programming a new system. While one developer codes, the other makes comments

and observations, and acts as a sounding board. The technique has been shown to lead to

higher quality thanks to the de facto continuous code review – bugs and errors are avoided

because the team catches them as the code is written.

Pair testing

Test approach where two persons, e.g. two testers, a developer and a tester, or an end-user

and a tester, work together to find defects. Typically, they share one computer and trade

control of it while testing. One tester can act as observer when the other performs tests.

Performance testing

A test to evaluate whether the system meets performance requirements such as response

time or transaction frequency.

Positive testing

A test aimed to show that the test object works correctly in normal situations. For example,

a test to show that the process of registering a new customer functions correctly when using

valid test data.

Postconditions

Environmental and state conditions that must be fulfilled after a test case or test run has

been executed.

Preconditions

Environmental and state conditions that must be fulfilled before the component or system

can be tested. May relate to the technical environment or the status of the test object. Also

known as prerequisites or preparations.

Prerequisites

See preconditions.

Priority

The level of importance assigned to e.g. a defect.

Professional tester

A person whose sole job is testing.

Program testing

See component testing.

Q

Page 21 of 28

Quality

The degree to which a component, system or process meets specified requirements and/or

user/customer needs and expectations.

Quality assurance (QA)

Systematic monitoring and evaluation of various aspects of a component or system to

maximize the probability that minimum standards of quality are being attained.

R

Record and playback tool

Test execution tool for recording and playback of test cases often used to support

automation of regression testing. Also known as capture/playback.

Regression testing

A test activity generally conducted in conjunction with each new release of the system, in

order to detect defects that were introduced (or discovered) when prior defects were fixed.

Compare to Re-testing.

Release

A new version of the system under test. The release can be either an internal release from

developers to testers, or release of the system to the client. See also release management.

Release testing

A type of non-exhaustive test performed when the system is installed in a new target

environment, using a small set of test cases to validate critical functions without going into

depth on any one of them. Also called smoke testing – a funny way to say that, as long as

the system does not actually catch on fire and start smoking, it has passed the test.

Requirements management

A set of activities covering gathering, elicitation, documentation, prioritization, quality

assurance and management of requirements for an IT system.

Re-testing

A test to verify that a previously-reported defect has been corrected.

Retrospective meeting

A meeting at the end of a project/a sprint during which the team members evaluate the

work and learn lessons that can be applied to the next project or sprint.

Review

A static test technique in which the reviewer reads a text in a structured way in order to find

defects and suggest improvements. Reviews may cover requirements documents, test

documents, code, and other materials, and can range from informal to formal.

Reviewer

A person involved in the review process that identifies and documents discrepancies in the

item being reviewed. Reviewers are selected in order to represent different areas of

expertise, stakeholder groups and types of analysis.

https://reqtest.com/testing-blog/regression-testing-types-techniques-tools/

Page 22 of 28

Risk

A factor that could result in future negative consequences. Is usually expressed in terms of

impact and likelihood.

Risk-based testing

A structured approach in which test cases are chosen based on risks. Test design techniques

like boundary value analysis and equivalence partitioning are risk-based. All testing ought to

be risk-based.

S

Scalability testing

A component of non-functional testing, used to measure the capability of software to scale

up or down in terms of its non-functional characteristics.

Scenario

A sequence of activities performed in a system, such as logging in, signing up a customer,

ordering products, and printing an invoice. You can combine test cases to form a scenario

especially at higher test levels.

Scrum

An iterative, incremental framework for project management commonly used with agile

software development.

Session-based testing

An approach to testing in which test activities are planned as uninterrupted, quite short,

sessions of test design and execution, often used in conjunction with exploratory testing.

Severity

The degree of impact that a defect has on the development or operation of a component or

system.

Site acceptance testing (SAT)

Acceptance testing carried out onsite at the client’s location, as opposed to the developer’s

location. Testing at the developer’s site is called factory acceptance testing (FAT).

Smoke testing

See release testing.

State transition testing

A test design technique in which a system is viewed as a series of states, valid and invalid

transitions between those states, and inputs and events that cause changes in state.

Static testing

Testing performed without running the system. Document review is an example of a static

test.

Stress testing

Testing meant to assess how the system reacts to workloads (network, processing, data

Page 23 of 28

volume) that exceed the system’s specified requirements. Stress testing shows which

system resource (e.g. memory or bandwidth) is first to fail.

Supplier

The organization that supplies an IT system to a client. Can be internal or external. Also

called vendor. Contrast with Client.

System

The integrated combination of hardware, software, and documentation.

System integration testing

A test level designed to evaluate whether a system can be successfully integrated with other

systems (e.g. that the tested system works well with the finance system). May be included

as part of system-level testing, or be conducted as its own test level in between system

testing and acceptance testing.

System testing

Test level aimed at testing the complete integrated system. Both functional and non-

functional tests are conducted.

T

Test automation

The process of writing programs that perform test steps and verify the result.

Test basis

The documentation on which test cases are based.

Test case

A structured test script that describes how a function or feature should be tested, including

test steps, expected results preconditions and postconditions.

Test data

Information that completes the test steps in a test case with e.g. what values to input. In a

test case where you add a customer to the system the test data might be customer name

and address. Test data might exist in a separate test data file or in a database.

Test driven development

A development approach in which developers writes test cases before writing any code.

Test driver

A software component (driver) used during integration testing in order to emulate (i.e. to

stand in for) higher-level components of the architecture. For example, a test driver can

emulate the user interface during tests.

Test environment

The technical environment in which the tests are conducted, including hardware, software,

and test tools. Documented in the test plan and/or test strategy.

https://en.wikipedia.org/wiki/Test_automation

Page 24 of 28

Test execution

The process of running test cases on the test object.

Test level

A group of test activities organized and carried out together in order to meet stated goals.

Examples of levels of testing are component, integration, system, and acceptance test.

Test log

A document that describes testing activities in chronological order.

Test manager

The person responsible for planning the test activities at a specific test level. Usually

responsible for writing the test plan and test report. Often involved in writing test cases.

Test object

The part or aspects of the system to be tested. Might be a component, subsystem, or the

system as a whole.

Test plan

A document describing what should be tested by whom, when, how, and why. The test plan

is bounded in time, describing system testing for a particular version of a system, for

example. The test plan is to the test leader what the project plan is to the project manager.

Test policy

A document that describes how an organization runs its testing processes at a high level. It

may contain a description of test levels according to the chosen life cycle model, roles and

responsibilities, required/expected documents, etc.

Test process

The complete set of testing activities, from planning through to completion. The test

process is usually described in the test policy.

Test report

A document that summarizes the process and outcome of testing activities at the conclusion

of a test period. Contains the test manager’s recommendations, which in turn are based on

the degree to which the test activities attained its objectives. Also called test summary

report.

Test run

A group of test cases e.g. all the test cases for system testing with owner and end-date.

Tests on one test level are often grouped into a series of tests, i.e. two-week cycles

consisting of testing, re-testing, and regression testing. Each series can be a test run.

Test script

Automated test case that the team creates with the help of a test automation tool.

Sometimes also used to refer to a manual test case, or to a series of interlinked test cases.

Page 25 of 28

Test specification

A document containing a number of test cases that include steps for preparing and resetting

the system. In a larger system you might have one test specification for each subsystem.

Test strategy

Document describing how a system is usually tested.

Test suite

A group of test cases e.g. all the test cases for system testing.

Testing

A set of activities intended to evaluate software and other deliverables to determine if that

they meet requirements, to demonstrate that they are fit for purpose and to find defects.

Third-party component

A part of an IT system that is purchased as a packaged/complete product instead of being

developed by the supplier/vendor.

Top-down integration

An integration test strategy, in which the team starts to integrate components at the top

level of the system architecture.

TPI

Test Process Improvement. A method of measuring and improving the organization’s

maturity with regard to testing.

Traceability

Analysis of a prior chain of events, as well as the ability to follow an object such as a

document or a program through various versions. Traceability enables you to determine the

impact of a change in requirements, assuming you also develop a traceability matrix.

U

UML

Unified Modeling Language. A technique for describing the system in the form of use cases.

See also use case.

Unit test

See component test.

Unit test framework

Software or class libraries that enable developers to write test code in their regular

programming language. Used to automate component and integration testing.

Usability

The capability of the software to be understood, learned, used and attractive to the user.

Page 26 of 28

Usability testing

A test technique for evaluating a system’s usability. Frequently conducted by users

performing tasks in the system while they describe their thought process out loud.

Use case

A type of requirements document in which the requirements are written in the form of

sequences that describe how various actors in the system interact with the system.

V

V-model

A software development lifecycle model that describes requirements management,

development, and testing on a number of different levels.

Validation

Tests designed to demonstrate that the developers have built the correct system. Contrast

with verification, which means testing that the system has been built correctly. A large

number of validation activities take place during acceptance testing.

Verification

Tests designed to demonstrate that the developers have built the system correctly. Contrast

with validation, which means testing that the correct system has been built. A large number

of verification activities take place during component testing.

Versioning

Various methods for uniquely identifying documents and source files, e.g. with a unique

version number. Each time the object changes, it should receive a new version number. See

also release management.

W

Waterfall model

A sequential development approach consisting of a series of phases carried out one by one.

This approach is not recommended due to a number of inherent problems.

White box testing

A type of testing in which the tester has knowledge of the internal structure of the test

object. White box testers may familiarize themselves with the system by reading the

program code, studying the database model, or going through the technical specifications.

Contrast with black box testing.

(adapted from reqtest.com/blog/glossary-of-testing-terms and softwaretestinghelp.com)

https://reqtest.com/testing-blog/white-box-testing-example/

Page 27 of 28

Boeing’s Software Testing Problem

Boeing’s 737 Max Software Outsourced to $9-an-Hour Engineers

By Peter Robison, June 28, 2019

Plane maker and suppliers used lower-paid temporary workers. Engineers feared the

practice meant code wasn’t done right.

It remains the mystery at the heart of

Boeing Co.’s 737 Max crisis: how a

company renowned for meticulous design

made seemingly basic software mistakes

leading to a pair of deadly crashes.

Longtime Boeing engineers say the effort

was complicated by a push to outsource

work to lower-paid contractors.

The cockpit of a grounded 737 Max 8 aircraft.

Photographer: Dimas Ardian/Bloomberg

The Max software -- plagued by issues that could keep the planes grounded months

longer after U.S. regulators this week revealed a new flaw -- was developed at a time

Boeing was laying off experienced engineers and pressing suppliers to cut costs.

Increasingly, the iconic American plane

maker and its subcontractors have relied on

temporary workers making as little as $9 an

hour to develop and test software, often from

countries lacking a deep background in

aerospace -- notably India.

Boeing 737 Max prepares for take-off during testing in 2016.

Photographer: Mike Kane/Bloomberg

Page 28 of 28

Related: Pilots Flagged Software Problems on Boeing Jets Besides Max

In offices across from Seattle’s Boeing Field, recent college graduates employed by

the Indian software developer HCL Technologies Ltd. occupied several rows of

desks, said Mark Rabin, a former Boeing software engineer who worked in a flight-

test group that supported the Max.

The coders from HCL were typically designing to specifications set by Boeing. Still,

“it was controversial because it was far less efficient than Boeing engineers just

writing the code,” Rabin said. Frequently, he recalled, “it took many rounds going

back and forth because the code was not done correctly.”

Boeing’s cultivation of Indian companies appeared to pay other dividends. In recent

years, it has won several orders for Indian military and commercial aircraft, such as

a $22 billion one in January 2017 to supply SpiceJet Ltd. That order included 100

737-Max 8 jets and represented Boeing’s largest order ever from an Indian airline, a

coup in a country dominated by Airbus.

Based on resumes posted on social media, HCL engineers helped develop and test

the Max’s flight-display software, while employees from another Indian

company, Cyient Ltd., handled software for flight-test equipment.

(Source: Bloomberg.com)

https://www.bloomberg.com/news/articles/2019-06-27/boeing-pilots-flagged-software-problems-on-jets-besides-the-max
https://www.bloomberg.com/quote/HCLT:IN
https://www.bloomberg.com/quote/CYL:IN

