

Leaving Certificate Applied Mathematics

National Seminar 10
Professional Learning Booklet
2023-2024

Schedule

09:30 - 11:00	A Kinematic Study of a Stretched/Compressed Spring
11:00 - 11:15	Tea and Coffee
11:15 - 13:00	Video Analysis, a Valuable Teaching & Learning Tool
13:00 - 14:00	Lunch
14:00 - 15:30	Managing our Subject Planning

Key Messages

Core to the specification is a non-linear approach which will promote the making of connections between various learning outcomes.

Strand 1 is the unifying strand and emphasises the importance of utilising mathematical modelling across all learning outcomes.

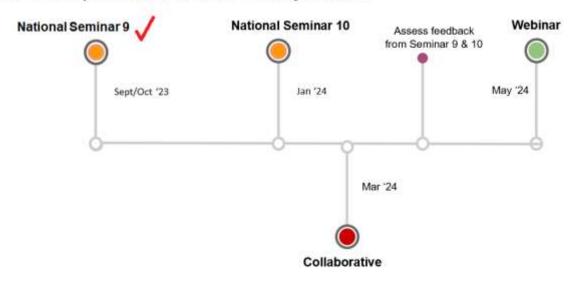
Applied Mathematics is rooted in authentic problems as a context for learning about the application of Mathematics.

Professional Development Supports

Overview of Support to Date

- 9 National Seminars
- 4 Collaboratives
- 2 Technology Workshops

Slides and additional Resources available


- 4 Webinars
- Video resources

Recordings available online

Professional Development Supports

Overview of Upcoming Support

Year 4 September 2023 - May 2024

Tacú leis an bhFoghlaim

A Kinematic Study of a Stretched/Compressed Spring

By The End of This Session You Will Have:

Explored a student-centred approach to developing an understanding of this topic.

Gained further experience of the 'Concepts through modelling' approach to teaching and learning.

Experienced a **constructivist teaching approach** to actively involve students in investigating kinematic equations for spring movement.

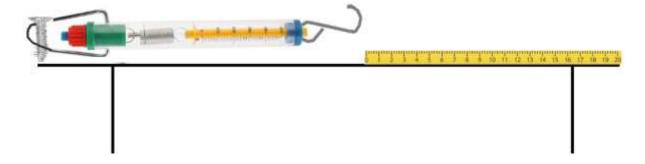
Concepts through Modelling

A trampoline is constructed with several elastic materials which can stretch and return to their original shape. As the elastic material moves, its potential and kinetic energies are continually changing.

Select any material in this image, which exhibits such plastic properties and can withstand repeated stress?

In groups,

- discuss the various quantities that students may consider, on viewing this image?
- consider any Laws that might come into play.


Student Led Enquiry

How would you interpret the movement, of this two-dimensional representation, of the spring?

Interpreting the spring movement?

Using the given apparatus, establish if a relationship exists between the force applied to a spring and the extension of the spring.

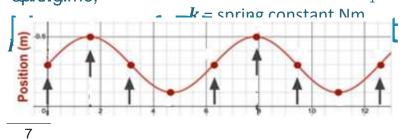
Can this concept be investigated or replicated at your tables?

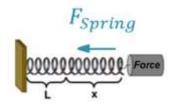
Consider what causes the spring to extend and contract?

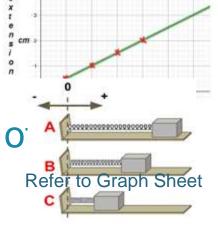
Feedback Guided Discovery

A relationship exists between the force applied to the spring and the extension of the spring.

What assumptions did we make?




Hooke's Law


Horizontal Springs

The spring exerts a force in the opposite direction as the direction of its stretch (or compression).

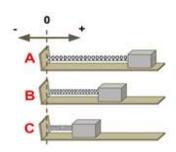
Hooke's Law states that a linear relationship between the amount of stretch and three disposerce rolleror champatis phenicible ally spuring time,

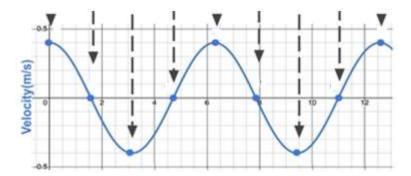
Speed and Velocity

As the block vibrates back and forth, its speed changes.

The speed is 0 m/s at the extreme positions and a maximum Moving from B to A and from B to C value at the equilibrium position.

The block slows down.

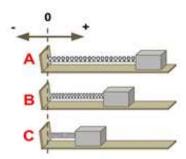

Moving from A to B and from C to B


The block speeds up.

Nature of Velocity of a Spring

As the block vibrates back and forth, its velocity changes periodically over time.

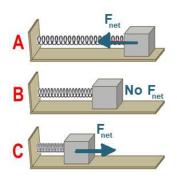
IDENTIFY the positions of A, B & C on the velocity-time graph below.



Acceleration of a Spring

As the block vibrates back and forth, its acceleration changes periodically over time,

Using the graph template provided, IDENTIFY the acceleration at positions A, B & C.

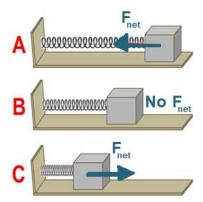


What can we conclude about the net force at each point?

Nature of Acceleration of a Spring

As the block vibrates back and forth, its speed changes.

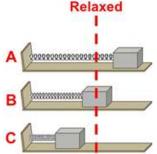
The speed is 0 m/s at the extreme positions and a maximum value at the equilibrium position.



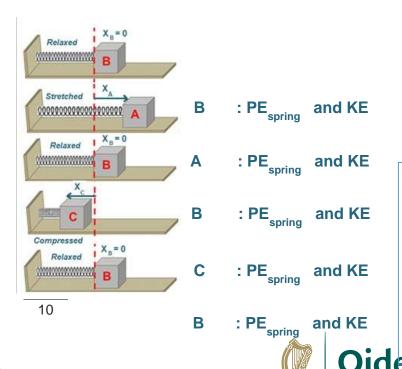
The acceleration is in the <u>direction</u> of and proportional to the net force (restoring force).

 $\boldsymbol{F}_{\text{net}}$, acceleration is always directed towards the equilibrium position.

 ${\bf F}_{\rm net}$, acceleration is largest at the extremes and 0 m/s/s at the equilibrium position.



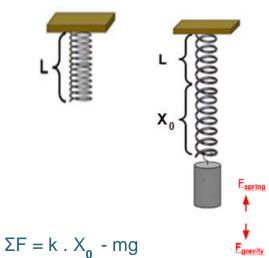
Energy Analysis(Horizontal Springs)


As the block vibrates back and forth between extremes, energy is changing from **Elastic Potential Energy** and **Kinetic Energy**.

Kinetic energy (speed dependent) is greatest at position B.

Elastic Potential Energy (stretch/compression dependent) is greatest at positions A and C

Energy Analysis(Horizontal Springs)



As the Kinetic Energy
increases, the Elastic
Potential Energy decreases
and vice versa, the Total
Mechanical Energy remains
constant.

Tacú leis an bhFoghlaim Ghairmiúil i measc Ceannairí Scoile agus Múinteoirí Supporting the Professional

Learning of School Leaders and Teachers

Hooke's Law (Vertical Springs)

But
$$\Sigma F = 0$$

$$\Rightarrow k . X_0 - mg = 0$$
$$\Rightarrow k . X_0 = mg$$

$$\Sigma F = k.(X + X_0) - mg$$

$$\Rightarrow$$
 $\Sigma F = k.X + k.X_0 - mg$

However, $k \cdot X_0 = mg$

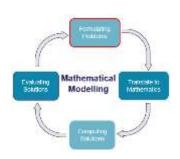
$$\Rightarrow \Sigma F = k.X + k.X_0 - mg$$
becomes

$$\Rightarrow$$
 $\Sigma F = k.X + mg - mg = k.X$

$$\Rightarrow \Sigma F = k.X$$

So, the restoring force is k.X as the spring stretches out Xcm from its resting point.

Concepts through Modelling Approach


A trampoline is constructed with a number of elastic materials which can stretch and return to their original shape. As the elastic material moves, its potential and kinetic energies are continually changing.

Select any material in this image, which exhibits such plastic properties and can withstand repeated stress?

In groups,

Consider how students might formulate variations to this problem?

Reflection

How well did this session assist you in your understanding of how Hooke's Law can be developed and formalised through authentic modelling problems?

Take Away Question

Consider the spring action on this Pinball machine.

What concepts from our specification might be developed concerning the movement of the ball, as a result of that spring motion?

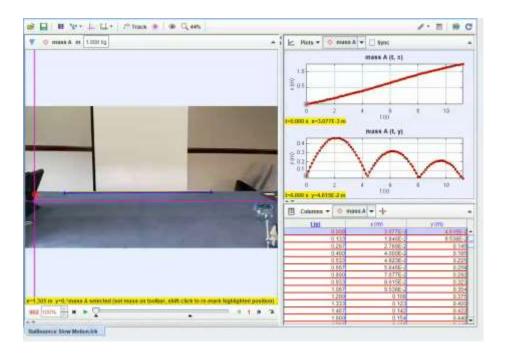
Using Video Analysis to Support Students' Engagement with Modelling

By The End of This Session You Will Have:

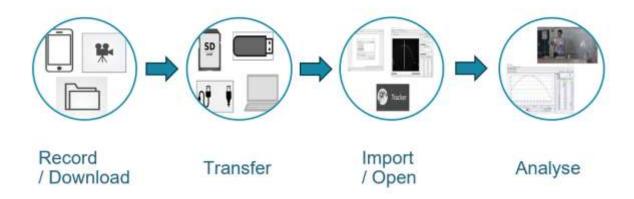
Engaged with Video Analysis as a tool to gather, represent and interpret authentic real-world data.

Explored the use of Video Analysis as an enabler of understanding.

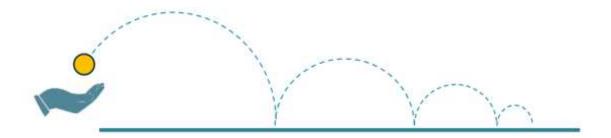
Investigated Video Analysis to enhance teaching and learning of Projectile Motion and other Strand 3 outcomes.



What is Video Analysis?


Video Analysis obtains real-world position and time data from frames of a video which can then be analysed.

Video Analysis Demonstration


Video Analysis carried out using "Tracker", free software available for download from https://physlets.org/tracker/

Video Analysis Process

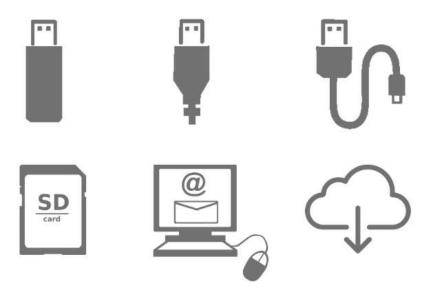
Group Task

Record a short video clip of a ball thrown onto flat surface

Record A Suitable Video

Use a high contrast background and/or brightly coloured object

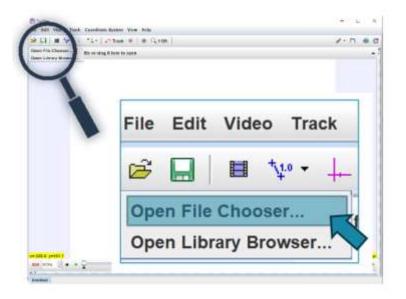
Try not use very fast-moving objects if using standard cameras/smartphones

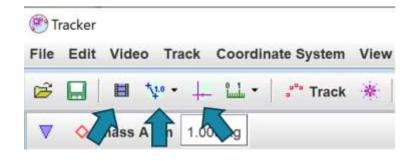

Keep the camera still while recording

Record / Download

Include a measurable item (e.g. metre stick) in the video

Set the camera up level and use motion that is perpendicular to the camera and from left to right


Transfer Video



Import Video File

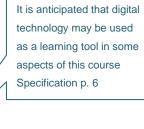
Analyse Video File

Group Discussion

How could Video Analysis be useful in other contexts?

With what other topics/learning outcomes could you see it being helpful?

What challenges exist in using vide analysis in your classroom and how could these be overcome?


Video Analysis and Applied Mathematics

It is expected that, in this course, students use digital technology for numerical experimentation and simulation Specification p.10

Modelling requires students to turn authentic situations into mathematical structures

Specification p. 6

Students should be able to use computational technology to solve problems Specification p. 16

Accurately use mathematics to represent real-world phenomena, analyse and evaluate information and data from different sources Specification p. 10

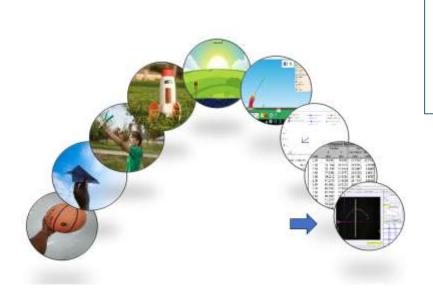
Aspects to consider when planning

Students' Prior Knowledge	Links within Applied Maths Specification	Cross-Curricular Links	
Real Life Examples/Applications	Mathematical Modelling Cycle	Teaching, Learning & Assessment Approaches	
Resources & Materials	Learning Intentions & Success Criteria	Inclusion	

What do you want your students to get out of this?

Real Life Applications **Projectile Motion**

"Applied Mathematics is inherently a transdisciplinary subject, authentic and relevant to the Real World " Specification p.8



Resources and Materials Projectile Motion

"The course is experiential in its structure and emphasises the practical application of mathematical knowledge to the world around us." Specification p.13

Reflection

What were your key takeaways from this session?

How can you implement ideas from this session in your teaching?

What are the next steps for enhancing teaching and learning using this technology?

Planning for Teaching, Learning and Assessment

By The End of This Session You Will Have:

Discussed/reflected on key learning from student engagement with the mathematical modelling cycle to inform your content and pedagogical planning.

Determined the need for allowing sufficient scope for change while developing a subject plan.

Worked in groups to plan a unit of work using a concepts through modelling approach.

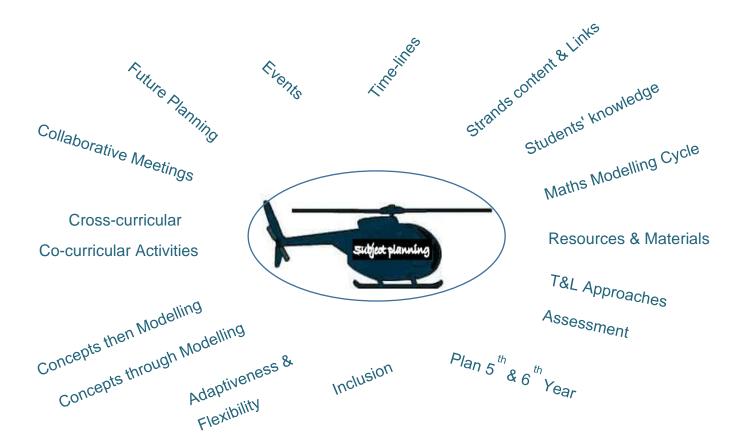
Rationale for Planning a timeline

I haven't done circular motion yet. When the brief for the project will be issued? Will I now have to drop what I'm doing at the minute to cover circular motion? Is anybody else in the same boat as me? What topics should I have covered I usually teach Integration in January. before Project is released? What topics can I delay teaching HELP!

> I usually teach circular motion last and now I feel will I might struggle to teach it earlier in order to prepare my students for their project.

Planning and Implementation

Engagement with the Specification


Now that the first two-year cycle is complete

- What does the term flexible planning mean to you?
- How might it be relevant for engaging with the Specification?

Overall 'helicopter view' of our subject planning?

Key questions when designing any **Unit of Work?**

What Learning outcomes will we include?

What prior knowledge learning should students have?

What other strands will this link to?

How many lessons would we anticipate this will this take?

When would be an appropriate time to engage with these learning outcomes?

What degree of flexibility could I build into planning this Unit of work?

Individual – Planning a Unit of Work

Consider aspects from the planning grid, to assist you plan a unit of work using a concepts through modelling approach, for **Projectile Motion.**

Feedback from Groups

Sample Planning Unit of Work

Topics	Learning Outcomes	Prior Knowledge & Classwork	Links & Cross- Curricular	Success Criteria & Assessment	Real-life applications & Resources	Teaching & Learning Approaches	Start Date End Date
Projectiles Horizontal Plane	Solve constant acceleration projectile motion problems involving displacement, velocity and time	Target Practice Use of Symmetry Time of Flight Max. Height Landing angles Condition for maximum Range (Calculus 6th Yr)	Solving Trigonometric identities Solve problems using equations. Identify conditions to be fulfilled for perticular circumstances Introducing wind resistance	Recognising link to real world Class Discussion Class and homework exercises Understanding difference between developing primary data and authenticating secondary data End-of-topic Test	Use of Rocket launcher and paper "rocket" projectiles to illustrate principles and stimulate interest in topic. Use of pHet simulations. Youtube projects Tracker software to collect real-time primary data	Active Learning Differentiated Instruction Collaborative Learning Experiential Learning Project-Based Learning	

Planning Using A Concepts Through Modelling Approach

Plan a Unit of Work for **any topic** using a *Concepts through Modelling* approach.

Create and share a poster representing your plan

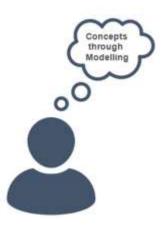
Refer to the Learning Outcomes Glance Card.

Topic	Learning Outcomes	Prior Knowledge & Classwork	Links & Cross- Curricular	Success Criteria & Assessment	Real-life applications & Resources	Teaching & Learning Approaches	Start Date End Date
-------	----------------------	--------------------------------	------------------------------	----------------------------------	---	--------------------------------------	------------------------

Poster Walk

Feedback from Groups

> How might your planning promote the making of connections between various learning outcomes.



➤ With a real-life application that you have selected, how might your students engage with the various stages of the Modelling Cycle.

Reflection

What were your key takeaways from this session?

What role might a **Concepts through Modelling** approach play in your planning for teaching the Applied Maths specification?

How can you implement ideas from this session into your teaching?

