Tacú leis an bhFoghlaim Supporting the Professional Ghairmiúil i measc Ceannairí Learning of School Leaders Scoile agus Múinteoiri and Teachers

Applied Mathematics Professional Learning Booklet 2023-2024

Oide
 Tacú leis an bhFoghlaim
 Ghairmiúil i measc Ceannairí
 Scoile agus Múinteoirí
 Supporting the Professional
 Learning of School Leaders and Teachers

© Oide 2023
This work is made available under the terms of the creative Commons Attribution Share Alike 3.0 Licence http://creativecommons.org/licences/by-sa/3.0/ie/. You may use and re-use this material (not including images and logos) free of charge in any format or medium, under the terms of the Creative commons Attribution Share Alike Licence. Please cite as: Oide Applied Maths National Seminar 9 Booklet 2023.

Introduction

Schedule

$09: 30$	-	Reviewing the journey so far and supporting students with the modelling project			
$11: 00$			\quad	$11: 00$	-
:---	:---				
$11: 15$	Tea and Coffee				
$11: 15$	-				
$13: 00$	Modelling with Multi-Stage Dynamic Programming				
$13: 00$	-				
$14: 00$	Lunch				
$14: 00$	-				

Overview Of Professional Development

Key Messages

1. Core to the specification is a non-linear approach empowered by the use of rich pedagogy which promotes the making of connections between various Applied Mathematics learning outcomes.
2. Strand 1 of the specification is a unifying strand and emphasises the importance of utilising modelling across all learning outcomes.
3. Applied Mathematics is rooted in authentic problems as a context for learning about the application of Mathematics to design solutions for realworld problems and to develop problem solving skills applicable to a variety of disciplines.

Session 1

Discussion - Taking Stock

Now that the first two year cycle of teaching the specification has been completed,

What have your main takeaways been?
What has been your biggest learning as a teacher?

Preparing For The Modelling Project

Having supported students in completing the first modelling project in 23/24,

Supporting Students With The Project

How best can teachers support students, before ...
during ...
after ...
the modelling project?
\square

Modelling Problem

Complete a mathematical modelling problem based on the following context:

The 2024 European football Championship takes place at multiple venues across Germany in June/July. A key feature of a team's preparation for this is planning the logistics of travel, accommodation, purchasing and allocating stock for the team and scheduling a team's itinerary.

Select one or more aspects of logistical planning and model the problem(s) you have selected using The Modelling Cycle.

Formulating The Problem

What problem statement could students initially choose to investigate?
What research and assumptions would be required for students?

Advice From Other Courseworks

Plan A Suitable Project Timeline

How will you allocate your class time from when the project is released to when it is submitted?

In groups, discuss an appropriate timeline for students' engagement with the project and how teachers will support them during this timeframe.

Reflection

What were your key takeaways from this session?
How can you implement ideas from this session into your teaching?
What are the next steps for enhancing students' modelling skills in your classroom?

Session 2

Dynamic Programming with Multi-Stage Authentic Problems

Strand 2 Support

Seminar 1: Introduction to Networks and Graph Theory, Algorithms and their applications

Seminar 2: Development of Dijkstra's Algorithm through Modelling
Seminar 4: Project Scheduling
Seminar 5: Bellman's Principle of Optimality and Dynamic Programming
Seminar 8: Exploring Project Scheduling with Project Scheduling Diagrams

All slides and relevant resources available on:

Strand 2 Algorithms

Minimum Spanning Tree

Prim's
Kruskal's

Starts from a single vertex and adds edges one at a time

Generally faster for dense graphs

Sorts edges by weight and adds them to the tree if they don't create a cycle

Works well with sparse graphs, does not require a starting vertex

Optimization

Dijkstra's

Finds the shortest path between a source vertex and all other vertices

Breaks down with negative edge weights

Dynamic Programming

Breaks a problem down into smaller sub-problems. Solutions to sub-problems stored and then the solution to overall problem constructed from the solutions to the sub-problems.

Dynamic Programming

- Dynamic Programming is not greedy
- Uses backward recursion, it takes an overall view of a problem.
- Can handle maximum and minimum problems easily and negative edge weights.
- Easily applicable to problems given in the form of a table.

Main disadvantages: requires a staged network and as it stores sub-problems, the time cost and space required to implement are higher.

Strand 2 Algorithms

Reviewing Prim's and Kruskal's

Find a minimum spanning tree for the below network using Prim's and then Kruskal's Algorithm. There are 4 possible solutions.

Strand 2 Algorithms
 Reviewing Dijkstra's Algorithm

Apply Dijkstra's algorithm to find the shortest path from U to Z .

Strand 2 Algorithms

Reviewing Dijkstra's Algorithm

Apply Dijkstra's to find the shortest path from U to Z in this network. Does it yield a correct solution?

Applying Dijkstra's gives a shortest path of UWYZ (shown below) with a total weight of 8 . Is this correct, Is there a shorter path?

Strand 2 Algorithms

Applying Dynamic Programming

Dynamic Programming is based on Bellman's Principle of Optimality

Any part of the shortest/longest path between the source and sink nodes is itself a shortestlongest path

Or: 'any part of the optimal path is itself optimal'

Interpreting a Real-World Problem

In many real-world settings the management of stock is an

2
Concepts through Modelling

Choose a real-world problem related to the distribution or management of stock and model the problem(s) you have selected using The Modelling Cycle.

Interpreting a Real-World Problem

Formulating Problems

Problem Statement: Joystick Junction has the last remaining stock of a new games console. What is the best route to take to get to Joystick Junction on the other side of the city?

The Modelling Cycle

Translating to Mathematics

The city can be represented with a simplified network
shown below and Bellman's principle can be applied directly to the network.

The Modelling Cycle

Computing Solutions

This shortest route problem can also be solved using an analogous table method. The first step is to identify the stages working backwards from the end point as shown below.

The Modelling Cycle

Computing Solutions

Use a table method to find the shortest route to Joystick Junction

Stage	State	Action	Value
1	P	JJ	$0+8=8$ *
	Q	JJ	$0+6=6$ *
	R	JJ	$0+10=10^{*}$
2	M	P	$12+8=20$
		Q	$11+6=17^{*}$
	N	P	
		Q	
		R	
	0	Q	
		R	
3	J	M	
		N	
	K	M	
		N	
		0	
	L	N	
		0	
4	Start	J	
		K	
		L	

The Modelling Cycle
 Evaluating Solutions

Interpret your mathematical solution(s) in the context of the problem you are modelling.

How accurate and reliable is your solution based on your earlier assumptions?

How can you refine your assumptions to improve your solution and how will this change your solution?

Interpreting a Real-World Problem

In many real-world settings the management of stock is an important consideration.

Choose a real-world problem related to the distribution or management of stock and model the problem(s) you have selected using The Modelling Cycle.

2
Concepts through Modelling
2
Concepts through Modelling

Problem Statement: How should I allocate stock across a number of retailers in order to maximise profit?

The Modelling Cycle

Formulating Problems

A games manufacturer needs to distribute 500 games consoles every month and can allocate these in multiples of 100 to three different retailers. The distributor fee/profit, in $€ 100$ s, for the number of units allocated to each retailer is shown in the table.

	Number of consoles allocated (x100)				
Retailers		1	2	3	4
5					
Joystick Junction	11	25	30	32	33
Button Bashers	15	16	17	18	19
Gamers Grotto	7	14	21	28	35

The manufacturer wants to know how many consoles should be allocated to each retailer to maximise their monthly income.

No. of units available No. of units allocated No. of units remaining

Use the table to figure out the best way to allocate the 500 consoles in order to maximise the distributor fees/profit.

Stage	State (Units Available)	Action (Units Allocated)	Destination (Units Remaining)	Value (Cumulative Profit)
Gamers Grotto	0	0	0	0*
	1	1	0	7*
	2	2	0	14*
	3	3	0	21*
	4	4	0	28*
	5	5	0	35*
Button Bashers	0	0	0	$0+0=0$ *
	1	1	0	$15+0=15^{*}$
		0	1	$0+7=7$
	2	2	0	$18+0=18$
		1	1	$15+7=22^{*}$
		0	2	$0+14=14$
	3	3	0	
		2	1	
		1	2	
		0	3	
	4	4	0	
		3	1	
		2	2	
		1	3	
		0	4	
	5	5	0	
		4	1	
		3	2	
		2	3	
		1	4	
		0	5	
Joystick Junction	5	5	0	
		4	1	
		3	2	
		2	3	
		1	4	
		0	5	

The Modelling Cycle

Evaluating Solutions

Interpret your mathematical solution(s) in the context of the problem you are modelling.

How accurate and reliable is your solution based on your earlier assumptions?
How can you refine your assumptions to improve your solution and how will this change your solution?

Reflection

What were your key takeaways from this session?

What considerations are needed to take this learning back to your classroom?

Session 3

Exploring Difference Equations

Prior Knowledge

Difference Equations

A Recurrence relation is an equation that defines a sequence where the next term is a function of the previous term(s).

This mathematical relationship often involves the differences between successive values of a function of a discrete variable - hence the expression Difference equations.
$4,7,12,19,28,39, \ldots$
$0,1,3,14,57,227,966, \ldots$
$0,1,1,2,3,5,8,13,21 \ldots$
$1,2,2,4,8,32,256, \ldots$.

Prior Knowledge

Recall - Word Problem from National Seminar 3

According to legend King Shirham of India wanted to reward his servant for inventing and presenting him with the game of chess. The desire of his servant seemed modest: "Give me a grain of wheat to put on the first square of this chessboard, and two grains to put on the second square, and four grains to put on the third, and eight grains to put on the fourth and so on, doubling for each successive square, give me enough grain to cover all 64 squares."
"You don't ask for much. Your wish will certainly be granted" exclaimed the king.

Based on an extract from "One, Two, Three...Infinity", Dover Publications

Prior Knowledge

Junior Certificate Mathematics

$$
\begin{array}{rlrl}
T_{1} & =1 & T_{1}=1=2^{\circ} \\
T_{2} & =2 & T_{2}=2=2^{1} \\
T_{3} & =4 & T_{3}=4=2^{2} \\
T_{4} & =8 & T_{4}=8=2^{3} \\
T_{5} & =16 & T_{5}=16=2^{4} \\
S_{64} & =2^{0}+2^{1}+2^{2}+2^{3}+2^{4}+\ldots+2^{63} \\
2 \times S_{64} & =2_{1}^{1}+2^{2}+2^{3}+2^{4}+\ldots+2^{69}+2^{84} \\
-S_{64} & =-\left(2^{0}+2^{1}+2^{2}+2^{5}+2+\ldots+2^{69}\right) \\
& =2^{64}-2^{6}=2^{64}-1 & S_{64}=2^{64}-1
\end{array}
$$

Prior Knowledge

Leaving Certificate Mathematics

$$
\begin{array}{ll}
T_{1}=1 & T_{1}=1=2^{\circ} \\
T_{2}=2 & T_{2}=2=2^{1} \\
T_{3}=4 & T_{3}=4=2^{2} \\
T_{4}=8 & T_{4}=8=2^{3} \\
T_{5}=16 & T_{5}=16=2^{4}
\end{array}
$$

Recurrence relation $T_{n}=2^{-1} n \in N, n>1$
$S_{a 4}=1+2^{\prime}+2^{y}+2^{3}+2^{i}+\ldots+2^{n 3}$
This a geometric series
The first term $a=1$, the ratio $\mathrm{r}=2$
$S_{n}=\frac{a\left(r^{n}-1\right)}{(r-1)} \Rightarrow S_{64}=\frac{1\left(2^{64}-1\right)}{(2-1)} \quad S_{64}=\left(2^{64}-1\right)$

What Decides the Order of an Equation?

Consider the sequence of numbers: $\quad 0,1,1,2,3,5,8,13,21 \ldots$

Recurrence relation	$U_{n+1}=U_{n}+U_{n-1}$ $n>1, n \varepsilon N$	$=\quad$Order = difference between the iterates
	$=>+1)-(n-1)$	

This equation is called homogeneous because each term is determined by its previous terms only.

Determine the order of the following

Difference Equation	Order of the Equation	Homogeneous or InHomogeneous
$5 \mathrm{U}_{\mathrm{n}+1}+6 \mathrm{U}_{\mathrm{n}}=0$	$\mathbf{1}$	Homogeneous
$3 \mathrm{U}_{\mathrm{n}+2}+\mathrm{U}_{\mathrm{n}+1}-2 \mathrm{U}_{\mathrm{n}}=0$	$\mathbf{2}$	Homogeneous
$\mathrm{U}_{\mathrm{n}+2}-9 \mathrm{U}_{\mathrm{n}}=0$	$\mathbf{2}$	Homogeneous
$\mathrm{U}_{\mathrm{n}+3}-5 \mathrm{U}_{\mathrm{n}+1}+6=0$	$\mathbf{2}$	InHomogeneous

Characteristic Equation

A Characteristic Equation assists us in determining an expression for any term whether we know its preceding terms or not.

Consider the $2^{\text {nd }}$ order difference equation $U_{n+2}-5 U_{n+1}+6 U_{n}=0$
We see the coefficients of each term are $1 U_{n+2}-5 U_{n+1}+6 U_{n}=0$

Difference Equation	Homogeneous or InHomogeneous	Characteristic Equation	Roots of Equation
$\mathrm{U}_{\mathrm{n}+2}-5 \mathrm{U}_{\mathrm{n}+1}+6 \mathrm{U}_{\mathrm{n}}=0$	Homogeneous	$1 \mathrm{X}^{2}-5 \mathrm{X}+6=0$	$\mathrm{X}=2, \mathrm{X}=3$

Group Work

In groups, consider the $2^{\text {nd }}$ Order homogeneous difference equations shown and determine both the characteristic equation and the roots of those equations.

$5 U_{n+2}-6 U_{n}=0$
$3 U_{n+2}+U_{n+1}-2 U_{n}=0$
$U_{n+2}-6 U_{n+1}+9 U_{n}=0$

Mathematical Modelling Brief

In many real-world settings the management of stock is an important consideration.

Choose a real-world problem related to the distribution or management of stock and model the problem(s) you have selected using The Modelling Cycle.

1
Concepts, then Modelling

Mathematical Modelling Problem

Problem Statement:

Determine the population of trout in the river Slaney over the next few years, following the introduction of a small number of trout to the river prior to their annual breeding season.

Student-Led Enquiry

In groups,

- discuss what background research that students might consider conducting in order to bring clarity to this problem.
- consider any assumptions students may make.

Outcome of Discussion

At the start of 2021 biologists introduced twelve trout to an isolated area of the river just before their annual breeding season.

They found that the population had doubled by the start of 2022.

The biologists responsible assumed that the current population of trout may be modelled using a difference equation.

Determine the Population of Trout

Formulate the problem - Assumptions
The biologist assumed that the current population of trout may be modelled by the following difference equation:

$$
\mathrm{P}_{\mathrm{n}}=2.1 \mathrm{P}_{\mathrm{n}-1}-0.9 \mathrm{P}_{\mathrm{n}-2}
$$

where P_{n} is the current population of trout in the river and nEN.
$\mathrm{P}_{0}=12$ in $2021, \mathrm{P}_{1}=24$ in 2022

Determine the Population of Trout

Translate to Mathematics
$\mathrm{P}_{\mathrm{n}}=2.7 \mathrm{P}_{\mathrm{n}-1}-1.8 \mathrm{P}_{\mathrm{n}-2}$ where P_{n} is the current population of trout in the river and $n \in N$.

What type of equation does this represent?
We have to
(i) Solve this difference equation.
(ii) Calculate the population of trout for say the following two years

Determine the Population of Trout
 Computing the Solution

Characteristic equation $\mathrm{x}^{2}-2.7 \mathrm{x}+1.8=0$

Two distinct roots α, β $U_{n}=\left(l \alpha^{n}\right)+\left(m \beta^{n}\right)$

Solving this quadratic leads to $x=3 / 2$ and $x=6 / 5$

The roots are different therefore we will $\mathrm{Pn}=1\left(0^{\mathrm{n}}\right)+\mathrm{m}\left(\beta^{\mathrm{n}}\right)$

$$
\mathrm{P}_{\mathrm{n}}=1(3 / 2)^{\mathrm{n}}+\mathrm{m}(6 / 5)^{\mathrm{n}}
$$

Taking $P_{0}=12$ and $P_{1}=24$ we get

$$
\begin{array}{llr}
\mathrm{P}_{0}=\mathrm{l}(3 / 2)^{0}+\mathrm{m}(6 / 5)^{0}=12 & \rightarrow & 1+\mathrm{m}=12 \\
\mathrm{P}_{1}=\mathrm{l}(3 / 2)^{1}+\mathrm{m}(6 / 5)^{1}=24 & \rightarrow & 51+4 \mathrm{~m}=80
\end{array}
$$

Determine the Population of Trout

Computing the Solution

Solving these simultaneous equations

$$
\mathrm{I}+\mathrm{m}=12
$$

$$
\underline{5 l+4 m=80}
$$

$\mathrm{I}=32$ and $\mathrm{m}=-20$

$$
=>P_{n}=32(3 / 2)^{n}-20(6 / 5)^{n}
$$

This is the solution for the difference equation.
$\mathrm{P}_{2}=32(3 / 2)^{2}-20(6 / 5)^{2}=43.2 \approx 43$ trout in 2023
$\mathrm{P}_{3}=32(3 / 2)^{3}-20(6 / 5)^{3}=73.44 \approx 73$ trout in 2024

Determine the Population of Trout

Evaluating the Solution

12 trout in 2021
43 trout in 2023

24 trout in 2022
73 trout in 2024

Does this seem accurate based on earlier assumptions?
What effect would changing your variables/assumptions have on your solution?

Determine the Population of Trout

Formulate the problem - Assumptions

The biologists, flush with success, adjusted their model to factor in the redistribution of trout to other Irish rivers.

At the start of 2025 Biologists plan to remove twenty trout from the Slaney and rehome them in rivers throughout the country.

The biologist revised their model as follows:

$P_{n}=2.7 P_{n-1}-1.8 P_{n-2}-20$ where P_{n} is the current population of trout in the river and $n E N$

Determine the Population of Trout

Translate to Mathematics
$P_{n}=2.7 P_{n-1}-1.8 P_{n-2}-20$ where P_{n} is the current population of trout in the river and nN

What type of equation does this represent?

Using this revised model, calculate the revised populations in 2025 and 2026.

Determine the Population of Trout

Computing the Solution

Taking $P_{0}=43$ and $P_{1}=73$
Population in $2025 P_{n}=2.7(73)-1.8(43)-20=99.7 \approx 99$ trout in 2025
Population in $2026 P_{n}=2.7(99)-1.8(73)-20=115.9 \approx 115$ trout in 2026
Revised modelling Equation:
Rearranging to find particular solution:

$$
P_{n}=2.7 P_{n-1}-1.8 P_{n-2}-20
$$

P_{n}	-2.7P n^{1}	$+1.8 \mathrm{P}_{\mathrm{n}-2}$	$=0 n-20$
$(\mathrm{an}+\mathrm{b})$	-2.7(a(n-1)+b)	$+1.8(\mathrm{a}(\mathrm{n}-2)+\mathrm{b})$	= $0 \mathrm{n}-20$
$a n+b$	$-2.7(a n-a+b)$	+ 1.8(an-2a+b)	$=0 n-20$
$a n+b$	$-2.7 a n+2.7 a-$	+ 1.8an -3.6a + 1	$=0 n-20$
		$=0 n \Rightarrow a=0$	
		$20 \Rightarrow \mathrm{~b}=\mathbf{- 2 0 0}$	

A Second order inhomogeneous equation is of the form:

$$
a P_{n}+b P_{n-1}+c P_{n-2}=F(n)
$$

The solution to an inhomogeneous equation has two components

$\mathrm{F}(\mathrm{n})$
constant
Kn
Kntc
Kn^{2}
$\mathrm{Kn}^{2}+\ln +\mathrm{m}$
Kp

$$
P_{n} \mid=[\text { general soln. of associated homogeneous difference equation }]+[\text { particular soln. of full equation }]
$$

So, to solve an inhomogeneous difference equation we must first find the general solution to the associated equation (also known as the complimentary equation) and then the particular solution to the inhomogeneous equation.

Determine the Population of Trout

Computing the Solution
If we use the estimate for 2025 and 2026, we get:
$P_{n}=I(3 / 2)^{n}+m(6 / 5)^{n}-200$
Using earlier estimates $2025 P_{0}=99$ and $2026 P_{1}=115$
$P_{n}=1(3 / 2)^{n}+m(6 / 5)^{n}-200$

$$
P_{0}=1(3 / 2)^{0}+m(6 / 5)^{0}-200=99 \Rightarrow \quad 1+m=299
$$

$$
P_{1}=1(3 / 2)^{1}+m(6 / 5)^{1}-200=115 \Rightarrow \quad 15 \mid+12 m=3150
$$

Solving these simultaneous equations $l=-146$ and $m=445$

$$
P_{n}=(-146)\left(\frac{3}{2}\right)^{n}+(445)\left(\frac{6}{5}\right)^{n}-200
$$

Evaluating the Solution

If we use the $P_{0}=43$ (2023) and $P_{1}=73$ (2024), we get:

$P_{n}=I(3 / 2)^{n}+m(6 / 5)^{n}-200$

However, if we used $2023 P_{0}=43$ and $2024 P_{1}=73$

$$
\begin{array}{lr}
P_{n}=I(3 / 2)^{n}+m(6 / 5)^{n}-200 \\
P_{0}=\mid(3 / 2)^{0}+m(6 / 5)^{0}-200=49 \Rightarrow & 1+m=243 \\
P_{1}=\mid(3 / 2)^{1}+m(6 / 5)^{1}-200=73 \Rightarrow & 15 \mid+12 m=2730
\end{array}
$$

Solving these simultaneous equations $l=-62$ and $m=305$

$$
P_{n}=(-62)\left(\frac{3}{2}\right)^{n}+(305)\left(\frac{6}{5}\right)^{n}-200
$$

Extending The Learning

Determine the Population of

 Trout in river Slaney*, being able to critically evaluate mathematical models is a desiratie stam for them to acciuire' p. 16

Evaluating the Solution:

How accurate and reliable is your solution based on your earlier assumptions? What effect would changing your variables/assumptions have on your solution? How does your solution compare with previous solutions/iterations? Can you refine/alter your assumptions to improve your solution and will this change your solution much?

What might a further iteration look like?

How could the model be refined to improve its accuracy?

Reflection

How well did this session assist you in your understanding of how difference equations can be developed and formalised through authentic modelling problems?

How useful/relevant did you find today's cross-curricular linking to mathematics?

