
National Workshop 7
Day 1

Leaving Certificate Computer Science

Workshop Overview

Session 1

10:00 - 11:30
Computational thinking IV

Tea/Coffee

11:30 – 12:00

Session 2

12:00 - 13:30
Formative Assessment for LCCS

Lunch

13:30 - 14:30

Session 3

14:30 - 16:30
Computer systems IV

Key Messages
Leaving Certificate Computer Science

aims to develop and foster the learner’s

creativity and problem-solving, along with

their ability to work both independently

and collaboratively

LCCS can be effectively mediated through

the use of a constructivist pedagogical

orientation which will incorporate

participatory and inquiry- based learning

activities (whole-class, group, pair or

individual).

Digital technologies used in LCCS have the

potential to enhance collaboration, learning and

reflection, by enabling students to learn more

efficiently and to facilitate work that might not

otherwise be possible.

Supports Provided by Oide

Text

National

Workshops
School Support ScoilnetWebinars

Skills

Workshops
Oide website CompSciCollaboratives

CPD Supports

NW7 Session 1:
Computational
Thinking V

Overview of the session

Part 1 Computational Thinking Concepts

Part 2 Computational Thinking Activities

WARM UP

What is Computational Thinking?
"Computational Thinking is the thought processes involved in formulating
problems and their solutions so that the solutions are represented in a form
that can be effectively carried out by an information-processing agent.“

Jeannette M. Wing, Carnegie Mellon University (2011)

https://www.shuchigrover.com/a-tale-of-two-cts-

and-a-revised-timeline-for-computational-thinking/

https://www.shuchigrover.com/a-tale-of-two-cts-and-a-revised-timeline-for-computational-thinking/
https://www.shuchigrover.com/a-tale-of-two-cts-and-a-revised-timeline-for-computational-thinking/

Computational Thinking Concepts

Source: https://csunplugged.org/en/computational-thinking/

https://csunplugged.org/en/computational-thinking/

Computational Thinking: Daily Examples

• Looking up a name in an alphabetically sorted list (Linear search: start at the top; Binary

search: start in the middle)

• Queueing at a bank, supermarket, check-in desk, passport control (Performance analysis

of task scheduling)

• Taking your children to football, music and the swimming pool (Traveling salesman with

more constraints)

• Cooking a gourmet meal (Multi-tasking, Parallel processing)

• Cleaning out your garage (Keeping only what you need vs. throwing out stuff when you

run out of space)

• Storing away your child’s toys scattered on the floor (using hashing e.g., by shape, by

color)

Why is Computational Thinking important?

➢ It moves students beyond being technologically literate

➢ It creates problem solvers instead of software technicians

➢ It emphasises the creation of knowledge rather than the use of information

➢ It presents endless possibilities for creative problem solving

➢ It enhances the problem-solving techniques you already teach

(Source: Pat Phillips, NECC 2007, Atlanta)

“What are effective ways for teaching
computational thinking?”

How to teach Computational Thinking?

✓ Increase your own CT knowledge

✓ Integrate CT concepts into everyday instruction

✓ Use CT terms for everyday tasks e.g. “Let’s create an

algorithm for…”

✓ Encourage students to formulate and test their own

hypotheses e.g. “Crime rates are on the rise…”

✓ Provide opportunities for students to transfer their learning
to other situations

Computational Thinking and Problem Solving
• The four pillars model (algorithms, pattern recognition, decomposition,

abstraction) is well suited to the constructivist ethos of Leaving Certificate

Computer Science

• György Pólya’s four principles (understand, plan, carry out, look back)

of problem solving is popular among maths educators

• Wales/Woods model (define the situation, identify the goal, generate

ideas, plan, act, review)

• Bransford IDEAL process: Identify, Define, Explore, Anticipate and Act,

Look.

Applying
Computational
Thinking Skills

Looking at Marriage

• Jack is looking at Anne. Anne is looking at George.

• Jack is married. George is not married.

• Is a married person looking at an unmarried person?

Q. Does it matter whether Anne is married or not?

Source: https://www.bebras.uk/

Married Looking At

Jack

Anne

George

Yes Anne

George

No

?

?

Married Looking At

Jack

Anne

George

Yes Anne

George

No

YES

?

Married Looking At

Jack

Anne

George

Yes Anne

George

No

NO

?

Anne is married and looking at
George who is unmarried

Jack is married and looking at
Anne who is unmarried

Conclusion: Yes, a married person

is looking at an unmarried person.

George Boole

▪ Born 1815 in the English cathedral city of

Lincoln. Died in 1864.

▪ Inventor of Boolean Logic, which is the

basis of modern digital computers.
 “An Investigation of the Laws of Thought”

▪ First Professor of Mathematics at Queen's

College Cork (now UCC).

Group Activity

Einstein’s Riddle
There are four bungalows in our cul-de-sac, numbered
1 through 4 from left to right. They are made from
these materials: straw, wood, brick and glass.

• Mrs. Scott's bungalow is somewhere to the left of
the wooden one and the third one along is brick.

• Mrs. Umbrella owns a straw bungalow.

• Mr. Tinsley does not live at either end but lives
somewhere to the right of the glass bungalow.

• Mr. Wilshaw lives in the fourth bungalow, and the
first bungalow is not made from straw.

Each person lives in a different house made of a
different material from all the others.

Who lives where, and what is each person’s bungalow
made from?

Source: http://mathscircles.ie/#!/boole2school-lessons

Halloween Puzzle

During Halloween, four strange characters visited a
certain school: a witch, a goblin, a ghost, and a black cat.

Each of them went into exactly one of these rooms:

classroom 2, classroom 3, classroom 4 and the staff

room.

• The goblin stole a notebook.

• The cat painted her paws.

• The ghost hid in a desk.

• The witch left a present.

Use the clues provided to determine which classroom
each character visited.

Clue #1: Nothing was stolen

from classroom 4.

Clue #2: The ghost hid either in

classroom 2, or in the staff room.

Clue #3: Classroom 2 was not

visited by a goblin.

Clue #4: No notebooks or paints

are ever kept in the staff room.

Clue #5: The black cat did not

prowl through classroom 4.

Cut Hive Logic Puzzles

Cut Hive Logic Puzzles

Cut Hive Logic Puzzles

Cut Hive Logic Puzzles

Cut Hive Logic Puzzles

Single Hexagon Corners

Solution (no1)

Solution (no2)

Solution (no3)

1

3

2

1

2

4

3

1

2

1

2

3

2

4

3

3

1

2

3

1

2

3

1

3

1

2

Bertrand’s Box Problem

We have three boxes:

• One box contains two gold coins

• One box contains two silver coins

• One box contains one gold coin and one silver coin

Bertrand’s Box Problem

Shuffle the boxes so you don’t know which is which

Pick a box and take out a coin.

If it is a gold coin, what is the probability that the other coin in
that box is also gold?

Bertrand’s Box Problem

• Work by yourself for about 5 minutes.

• Work towards a solution, try to create a representation for
your solution, get an answer and a reason for your answer.

• After 5 minutes talk about your answer, your solution and
your reasoning with the others on your table.

• See if you can come to a consensus on the answer.

• After each group has had time to discuss, we will discuss
together and see if we can reach agreement on the answer.

Bertrand’s Box Problem

https://youtu.be/CGMc8B60ZpU

https://youtu.be/CGMc8B60ZpU

Algorithmic Thinking

Pieces can move either by sliding into an adjacent empty square, or by jumping a single
adjacent piece into the empty square immediately beyond.

The aim is to swap the positions of the black and white pieces.

Group Activity
Role play

Group Activity

Role play
answer = input ("Are you happy?")

if answer == "Y":

 print ("Smile!")

else:

 print ("Frown!")

print ("Thank you!")

answer == “Y”?

print

“Smile!”

print

“Thank you”

print

“Frown!”

True

False
answer = input

 “Are you happy?”

Successful Pedagogies

✓Analogy/storytelling

✓ CS Unplugged

Kinaesthetic Role-playing

Puzzles Art

Games Magic

✓Enquiry Based Learning (TEMI)

Programming Practice (Python / JavaScript)

Conclusion

• Computational Thinking tasks can be presented in a variety of ways

• Classroom context is key to deciding how to engage with certain topics

• There is no one way to think computationally (e.g. one’s pattern recognition may
be another’s abstraction)

• The process of problem solving is non-linear and progress can be slow

• “Be less helpful”

• Confusion can be a good thing

NW7 Session 2:
Formative
Assessment for
LCCS

Overview of the session

Part 1 Significance of Assessment

Part 2 Formative Assessment Principles

Part 3 Formative Assessment using Digital Portfolios (FADP) initiative

Part 4 Digital Tools for Assessment in LCCS

By the end of this session participants will have:

• been given the opportunity to enhance their understanding of
assessment and in particular formative assessment

• reflected on the importance of sharing learning intentions and
success criteria and their own engagement with this

• reflected on the importance of effective feedback

• been introduced to some digital tools which can be used to
support assessment and effective feedback in Computer
Science

Part 1:
Significance of
Assessment

Digital Strategy for Schools

“Empower schools to harness the
opportunities of digital transformation to
build digital competence and an effective
digital education ecosystem so as to develop
competent, critically engaged, active
learners while supporting them to reach their
potential and participate fully as global
citizens in a digital world”.

Digital Strategy for Schools to 2027

Looking at Our School 2022

“The teacher selects and uses preparation
and assessment practices that progress
pupils’ learning”.

“Teachers collectively develop and implement

consistent and dependable formative and

summative assessment practices”.

https://www.gov.ie/pdf/?file=https://assets.gov.ie/232720/c8357d7a-dd03-416b-83dc-9847b99b025f.pdf#page=null

Looking at Our School 2022

“The principal, the deputy principal and other
leaders in the school expect and encourage
teachers to develop and extend their
learning, teaching and assessment practices,
and to share and discuss practices that have
proven successful at improving pupils’
learning”.

https://www.gov.ie/pdf/?file=https://assets.gov.ie/232720/c8357d7a-dd03-416b-83dc-9847b99b025f.pdf#page=null

Part 2:
Formative
Assessment
including effective
feedback

Defining assessment

• Assessment is the process of generating, gathering, recording,
interpreting, using and reporting evidence of learning in
individuals, groups and systems. Educational assessment
provides information about progress in learning, and
achievement in developing skills, knowledge, behaviours and
attitudes.

 (NCCA, 2015)

Formative Assessment

Active role

Evidence of learning Adapt teaching Student progress

Adjust instruction
Adjust learning

Peer

assessment

& evaluation

Self-

assessment

& evaluation

Effective

formative

feedback

Peer

assessment

& evaluation

Effective use

of

Questioning

Learning

Intentions &

Success

Criteria

Formative Assessment Principles

Wiliam & Leahy (2015)
and Wylie et al (2008)

Learning Intentions and Success Criteria

An Introduction to AfL, Learning Unlimited (2004)

What is a Learning Intention?

• A statement, created by the teacher

• Describes clearly what the teacher wants the
students to know, understand and be able to
do

• Frequently linked to one or more learning
outcome

Learning Intentions should…

Clear: focus on what will be learned in the lesson, as distinct
from what students will do in the lesson

Useful: focus is on concepts, skills or knowledge that is used
rather than focusing on imparting knowledge

Transferable to a similar context

(Adapted from source: Leahy, S, Lyon, C and Wiliam, D. (Nov.2005) Classroom
Assessment: Minute by Minute, Day by Day. Educational Leadership)

Example of a Learning Intention

Learning
Intention

We will be able to

create a

presentation to

explain a topic to

an audience of

1st year

students/novices.

Learning
Outcome

Present
information in
online digital
formats suitable
for the required
audience.

LCA Information and

Communication Technology

Module: The Internet and Digital

Literacy

Unit: Principles and Practices

What are Success Criteria?

• Linked to learning intentions

• Developed by the teacher and/or students

• Describe what success looks like

Success Criteria should…

• Strengthen student learning

• Encourage independent learning

• Inform students what is expected of them

• Enable effective (formative) feedback

Success Criteria could be…

• a series of steps/sequence of instructions

• a list of options/menu from which the students can choose

• a list of “remember to” prompts

• a visual aid

• a rubric

Learning Intention to Success Criteria

Success
Criteria

❏ Presentation should contain 6 slides, including the title
slide

❏ The introduction should clearly outline the topic to be
discussed

❏ Each slide should have 2 to 4 short bullet points along
with a script that explains each point in greater detail

❏ There should be at least one opportunity for audience
engagement

❏ Take copyright into consideration for any external
content you use (text, images, video, etc.)

Learning
Intention

We will be able

to create a

presentation to

explain a topic

to an audience

of 1st year

students/novice

s.

Learning
Outcome

Present
information in
online digital
formats suitable
for the required
audience.

Personal Reflection

How often do I share learning
intentions with my students?

How often do I share success
criteria when I assign work to
my students?

61

Peer

assessment

& evaluation

Self-

assessment

& evaluation

Effective

formative

feedback

Peer

assessment

& evaluation

Effective use

of

Questioning

Learning

Intentions &

Success

Criteria

Formative Assessment Principles

Wiliam & Leahy (2015)
and Wylie et al (2008)

Formative Feedback

The Importance of Feedback on Learning

https://youtu.be/n7Ox5aoZ4ww

https://youtu.be/n7Ox5aoZ4ww

Effective Feedback

Focus on
Quality of
Student
Work

Identify
Successes &
Achievements

Relate to
Learning &
Success
Criteria

Indicate
suggestions for
improvement

Prompt student
thinking

Allow time for
improvement
to take place

Personal Reflection

How often do I provide
feedback to students that
prompts thinking?

How often do I allow time for

improvement to take place?

66

NCCA’s Workshop Series

https://ncca.ie/en/junior-cycle/assessment-and-reporting/focus-on-learning/

Sharing Learning

Intentions & Success

Criteria

Effective Questioning Formative Feedback Students Reflecting on

Learning

Learning Outcomes

https://ncca.ie/en/junior-cycle/assessment-and-reporting/focus-on-learning/

Part 3:
Formative
Assessment
using Digital
Portfolios(FADP)
initiative

What are Digital Portfolios?

Defining Digital Portfolios

“ePortfolios are student-owned,

dynamic digital workspaces

whereby students can capture

their learning, their ideas, access

their collections of work, reflect on

their learning, share it, set goals,

seek feedback and showcase

their learning and achievements.”

 NCCA, 2013

Elements of a Digital Portfolio

Drive

Sites

Classroom

OneDrive

Teams/
OneNote

Sway

Storage

Workspace

Showcase

Google Office 365

Learning

Outcomes

Formative Assessment using Digital
Portfolios Process

Effective

Use of

Learning

Intentions

Elicit

Evidence of

Learning &

Share SC

Effective

Formative

Feedback

Reflection

Why are we

learning what

we are learning?

What does

success look

like for this task?

Have the success

criteria been

achieved? Explain

where to make

improvements

Build awareness of

knowledge & skills

developed, identify

strengths & areas

for development.

Teaching &

Learning

Effective

Questioning

Student

Submits

Work

Effective

Questioning

Student

Resubmits

Work

Part 4:
Digital Tools for
Assessment in
LCCS

Types of Formative Feedback

● Quality V’s Frequency

● Read and Respond

● Link to LI and SC

● Short

● Most effective

● Most natural

● Most frequent

● Evidence?

Benefits of Using Digital Tools for Feedback

Conducted remotely Student progressRecord of feedback

“The principal and other leaders in the school lead a process of empowering teachers to embed

digital technologies in their learning, teaching and assessment practices, and regularly evaluate

the effectiveness of the use of these technologies”. LAOS 2022

Digital Tools for Formative Feedback

Vocaroo

http://vocaroo.com/
http://mote.com/

Home Expert Activity: Digital Tools for
Assessment in the LCCS Classroom

4 53

2

Home Expert Review

Diagnostic
Questions

1

Google Forms/
Microsoft Forms

1. Give a brief
description of the
application

2. List three benefits of
the application in the
LCCS classroom

3. Give one example of
how you might use
the application for
assessment in the
LCCS classroom

https://kahoot.com/schools/how-it-works/

Session 3:
Computer
Systems IV

Computer Systems and the Specification

“The core concepts are developed theoretically and applied practically. In this way,
conceptual classroom-based learning is intertwined with experimental computer lab-based
learning throughout the two years of the course.”

NCCA Curriculum specification, Page 20

LCCS Learning Outcomes

Strand 2: Abstraction

• 2.1 use abstraction to describe systems and to explain the relationship between wholes and parts

• 2.2 use a range of methods for identifying patterns and abstract common features

• 2.3 implement modular design to develop hardware or software modules that perform a specific function

• 2.4 illustrate examples of abstract models

Strand 2: Computer Systems

CPU: ALU, Registers, Program counter, Memory

Operating system layers: Hardware, OS, Application, User

• 2.11 describe the different components within a computer and the function of those components

• 2.12 describe the different types of logic gates and explain how they can be arranged into larger units to perform more
complex tasks

Computer Network Protocols: HTTP, TCP, IP, VOIP

• 2.15 explain what is meant by the World Wide Web (WWW) and the Internet, including the client server model,
hardware components and communication protocols

Electronics, Gates and Circuits

Data Representation

Computer Components

System Software

Application Software

End-user

Layers of a Computing System

Group Activity

Data Representation

https://youtu.be/b6vHZ95XDwU

https://youtu.be/b6vHZ95XDwU

Data Representation

Which cards do we need to turn over to make the number 13?

(The cards are black on the reverse side.)

Data Representation

Data Representation

What is the biggest number that can be represented using the above cards?

What is the smallest number that can be represented using the above cards?

How can we represent a bigger number?

Abstraction inside the computer

Computer
Components

What Makes a Computer, a Computer?

https://youtu.be/mCq8-xTH7jA

https://youtu.be/mCq8-xTH7jA

Von Neumann Architecture

https://youtu.be/Ml3-kVYLNr8

https://youtu.be/Ml3-kVYLNr8

Activity: Von Neumann Architecture

2.11 describe the

different

components within

a computer and

the function of

those components

The components are connected to one another by a collection of wires called a bus

Computer Components

Registers

• Storage locations internal to the CPU

• Used as a scratchpad by the CPU to store data, addresses or
instructions as it executes each program instruction

• Data can be moved into and out of registers faster than from
memory – dedicated pathways and hardware

The von Neumann Architecture of a
Computer

Primary Memory

Central Processing Unit (CPU)

Control Unit (CU) Arithmetic Logic Unit (ALU)

PC IR

MDRMAR

ACC1

System Buses
Input

Output
Controller

Input
Output

Controller

In
p

u
t D

evice
s

O
u

tp
u

t D
evice

s

ACC2 ACC3

Secondary Storage Devices

PC: Program Counter

IR: Instruction Register

MAR: Memory Address Register

MDR: Memory Data Register

ACC: Accumulator

The Fetch-Execute Cycle
At the start of the fetch-execute cycle, the Program
Counter contains the address of the next instruction to
be executed

Step 1. Fetch

The contents of the address in the PC are loaded
from memory to the Instruction Register (IR) (via the
MAR and MDR)

Step 2. Decode

The control unit determines the type of instruction to
be carried out and sets the control signals
accordingly.

Step 3. Execute

The operation is carried out by the CU or the ALU
(depending on the instruction – load and store
operations are carried out by the CU while arithmetic
and logical operations are carried out in the ALU).

Step 4. Store

The result of the operation is written to registers or
RAM

Control Unit (CU)

PC IR

MAR MDR

Decode

Arithmetic Logic
Unit (ALU)

ACC

Execute

Primary Memory (RAM)

Fetch (Store)

Central Processing Unit (CPU)

https://www.youtube.com/watch?v=jFDMZpkUWCw

https://www.youtube.com/watch?v=04UGopESS6A

https://www.youtube.com/watch?v=jFDMZpkUWCw
https://www.youtube.com/watch?v=04UGopESS6A

Little Man Computer

Little Man Computer Simulator:

https://peterhigginson.co.uk/LMC/

https://peterhigginson.co.uk/LMC/

Little Man Computer

Little Man Computer Demo:
https://www.futurelearn.com/info/courses/how-computers-
work/0/steps/49285

Little Man Computer Simulator:

https://peterhigginson.co.uk/LMC/

Little Man Computer Help:
https://peterhigginson.co.uk/LMC/help.html

Fetch Execute Decode Cycle:
https://www.futurelearn.com/info/courses/how-computers-
work/0/steps/49284

(Another) Little Man Computer Simulator:

https://www.101computing.net/lmc-simulator/

https://www.futurelearn.com/info/courses/how-computers-work/0/steps/49285
https://www.futurelearn.com/info/courses/how-computers-work/0/steps/49285
https://peterhigginson.co.uk/LMC/
https://peterhigginson.co.uk/LMC/help.html
https://www.futurelearn.com/info/courses/how-computers-work/0/steps/49284
https://www.futurelearn.com/info/courses/how-computers-work/0/steps/49284
https://www.101computing.net/lmc-simulator/

Operating
Systems

Layers of an OS

• Hardware

• Operating System

• Application

• User

Functions of an Operating System

Operating

System

File

Management

User

Interface

Process

Management

Memory

Management

User

Management

Graphical User Interface (GUI)

Mobile User Interface (MobUI)

Command Line Interface (CLI)

Security

Management

Hardware

Management

Operating System

Machine (hardware)

OS Nucleus (kernel)

Process Management

Memory Management

User Interface

File System (i/o)

Network / Security

• An operating system (OS) is a
program that acts as an interface
between the system hardware
and the user.

• It handles all the interactions
between the software and the
hardware.

• All the working of a computer
system depends on the OS at the
base level.

• It performs all the functions like
handling memory, processes, the
interaction between hardware and
software.

Programming
Languages

High-level vs Low-level

Artificial Intelligence

"You may ask whether a child who uses a chatbot to generate a
program is still actually doing programming. I would argue that
the child is still programming — only they are doing so in English
(or another human language a chatbot is trained to generate).
They are programming at a significantly higher level of
abstraction compared to using traditional programming
languages"

 Ken Kahn, University of Oxford

https://www.raspberrypi.org/hello-world

Computer
Network
Protocols

Protocols

• All methods of communication need rules in place in order to
pass on the message successfully. These sets of rules are
called protocols.

• What protocol exists for meeting someone new? Is this the
same in all countries?

• In which cultures do people use the below protocols to greet each other?

• Bowing

• Rubbing noses

• Sticking your tongue out

Computer protocols

• What rules (protocols) exist for an email address?

• What parts of this web address show rules (protocols) being
used?

• https://www.oide.ie/

https://www.oide.ie/

Communication protocols

• Internet Protocols are a set of rules that govern the communication
and exchange of data over the Internet. Both the sender and
receiver should follow the same protocols in order to communicate
the data.

• TCP/IP - Transmission Control Protocol/Internet Protocol - enables
communication over the internet.

• HTTP and HTTPS - Hypertext Transfer Protocol - governs
communication between a webserver and a client. HTTPS (secure)
includes secure encryption to allow transactions to be made over the
internet.

• FTP - File Transfer Protocol - governs the transmission of files
across a network and the internet.

Internet Protocols

https://youtu.be/ncGIs1Wnxn8

https://youtu.be/ncGIs1Wnxn8

Communication protocols

In your groups:

• Discuss how you have approached
(or will approach!) this area of the
course in your LCCS classroom.

• Prepare some feedback for the
wider group.

National Workshop 7
Day 2

Leaving Certificate Computer Science

Workshop Overview

Session 1

09:00 - 11:00
Algorithms IV

Tea/Coffee

11:00 – 11:30

Session 2

11:30 - 13:00
Computers in Society: Turing Machines

Lunch

13:00 - 14:00

Session 3

14:00 - 15:30
Curriculum Planning

Session 4:
Algorithms IV

Overview of the session

Part 1 Recap on Algorithms

Part 2 Algorithmic Complexity

Part 3 Analysis of Searching and Sorting Algorithms

Part 4 Limits of Algorithms & Heuristics

By the end of this session participants will have:

• reflected on their understanding of algorithms

• explained, through activities, the operation of a variety of searching
and sorting algorithms.

• used an analysis framework to explore the time complexity of the
aforementioned algorithms and in doing so deepened their
understanding of these algorithms.

• reflected on ideas to facilitate the effective learning of algorithms in
their own classrooms.

Part 1:
Recap on
Algorithms

Algorithms and the Specification

“The core concepts are developed theoretically and applied practically. In this way,
conceptual classroom-based learning is intertwined with experimental computer lab-based
learning throughout the two years of the course.”

NCCA Curriculum specification, Page 20

LCCS Learning Outcomes

2.5 use pseudo code to outline the functionality of an algorithm

2.6 construct algorithms using appropriate sequences, selections/conditionals, loops
and operators to solve a range of problems, to fulfil a specific requirement

2.7 implement algorithms using a programming language to solve a range of problems

2.8 apply basic search and sorting algorithms and describe the limitations and
advantages of each algorithm

2.9 assemble existing algorithms or create new ones that use functions (including
recursive), procedures, and modules

2.10 explain the common measures of algorithmic efficiency using any
algorithms studied

What is an algorithm?

A step-by-step procedure for solving a problem or accomplishing some end especially by a
computer Merriam-Webster

➢A sequence of instructions

➢A way of capturing intelligence and sharing it with others

➢Provide general solutions to problems

➢Some problems are so hard that they cannot be solved by algorithms (Computability)

➢Can be expressed in a variety of different ways

➢Common elements include input, processing, output

➢Close relationship between algorithms and data structures

➢Essential features are correctness and effectivenes

➢Rule-based algorithms vs. Machine learning algorithms (AI)

What is an algorithm?
“An algorithm is a set of rules for getting a specific output from a

specific input. Each step must be so precisely defined that it can be
translated into computer language and executed by machine”
Source: Knuth, D The Art of Computer Programming (Vol. 1, Fundamental Algorithms, 3rd ed.)

Donald Knuth

Finiteness

Definiteness

Input

Output

Effectiveness

An algorithm must always terminate after a finite number of steps.

Each step must be precisely defined.

An algorithm has zero or more inputs.

An algorithm has one or more outputs, which have a specified relation to the inputs.

All operations to be performed must be sufficiently basic that they can in principle be done exactly and in

finite length of time by someone using pencil and paper.

Part 2:
Algorithmic
Complexity

Algorithmic Complexity

Complexity is about analysing algorithms

Choice between algorithms often comes down to efficiency

We need to define objective measures that can be applied to
each algorithm

➔ Execution time?
➔ Number of statements/instructions executed?
➔ Number of times a fundamental operation is executed?

Time complexity

Time Complexity
Time complexity gives the number of operations an algorithm performs when
processing an input of size n.

An algorithm can have different time complexity values for the same n

We consider 3 cases:
Best Case: minimum number of operations required for a given input
Worst Case: maximum number of operations required for a given input
Average Case: average number of operations required for a given input

Q. Why are computer scientists mostly interested in worst case?

Worst-case analysis lets us make hard guarantees regarding upper bounds
on the amount of time it will take a critical process/task to complete.

Big-O

Big O is a notation used in Computer Science to describe the worst-
case running time (or space requirements) of an algorithm in terms of
the size of its input usually denoted by n.

Big-O notation provides a way to talk about the kind of relationship
between the size of the problem and the program running time.

Complexity allows us to classify algorithms (as ‘good’, ‘fair’ or
‘poor’ in terms of performance) and therefore provides a basis to
compare algorithms

Big-O
Big-O notation provides a way to talk about the kind of
relationship that holds between the size of the problem
and the program running time. A shorthand notation for
measuring worst-case complexities. It is inexact by
design.

O(1) Constant Complexity

O(𝑛) Linear Complexity

O(𝑛2) Quadratic Complexity

O(𝑙𝑜𝑔2𝑛) Logarithmic Complexity

O(𝑛𝑙𝑜𝑔2𝑛) Linearithmic Complexity

O(2𝑛) Exponential Complexity

O(𝑛!) Factorial complexity

O(infinity) tossing a coin until it lands on heads

Summary: Algorithmic Time Complexity

Always consider the running time and the expected format of the input list
before choosing a search or sorting algorithm for a particular problem.

Part 3:
Analysis of
Searching and
Sorting Algorithms

Sorting and Searching

An algorithm that maps the following input/output pair
is called a sorting algorithm:

An algorithm that maps the following input/output pair
is called a search algorithm:

Linear Search
Sample runs …

Binary Search

Source: geekforgeeks.com

Binary Search

Sample runs …

Group Activity:
Analysis of Search Algorithms

Activity #1: Analysis of Search Algorithms

1. Participants work in pairs (pair programming)

2. Each pair opens the Python programs
provided

3. The code is modified according to the
instructions in the manual

 (pages 75-80)

TASK:

Use the analysis framework

provided to test the assertion

that the binary search is

exponentially faster than the

linear search (see graph)

Activity #2: Counting Operations

• Spread 8 cards out in a single line on the
table – reverse order

• Sort the cards using one of the elementary
sorting algorithms counting the total number
of comparisons and swaps required

• Repeat for the other two elementary sorting
algorithms

• Repeat the process this time starting with the
cards already sorted

Activity #3: Analysis of Sort Algorithms

1. Participants work in pairs (pair programming)

2. Each pair opens the Python programs
provided

3. The code is modified according to the
instructions in the manual

 (pages 81-84)

TASKS:

Compare selection sort and insertion sort - best and worst cases

Compare selection sort and bubble sort - best and worst cases

References

http://courses.cs.vt.edu/~csonline/Algorithms/Lessons/index.html

https://www.khanacademy.org/computing/computer-
science/algorithms

https://algs4.cs.princeton.edu/home

https://csunplugged.org/

http://courses.cs.vt.edu/~csonline/Algorithms/Lessons/index.html
https://www.khanacademy.org/computing/computer-science/algorithms
https://www.khanacademy.org/computing/computer-science/algorithms
https://algs4.cs.princeton.edu/home
http://csunplugged.org/

Part 4:
Limits of
Algorithms &
Heuristic

Algorithmic Complexity: Limits of
Algorithms
Example: The Travelling Salesperson Problem (TSP)

Suppose you decide to ride a bicycle around Ireland

you will start in Cavan!

The goal is to visit Dublin, Cork, and Galway before
returning to Cavan

Cavan

Galway

Cork

Dublin

What is the best itinerary?

How can you minimise the number of kilometres and
yet make sure you visit all the cities?

Real World Applications

For many applications, the number of “cities” (n) can be thousands or more.

While it is not likely anyone would want to plan a bike trip to thousands of cities the
solution to finding the shortest tour of a large number of cities can be applied to (is
the same as) many important “real world” problems:

• transportation: school bus routes, service calls, delivering meals, post/parcel
deliveries, delivery of online purchases (e.g. Amazon)

• manufacturing: an industrial robot that drills holes in printed circuit boards

• design: VLSI (microchip) layout

• communication: planning new telecommunication networks

• space exploration: minimise the use of fuel in targeting and imaging manoeuvres
for the pair of satellites involved in NASA Starlight space interferometer program

• biology: to compute DNA sequences

Sources: Lero and Explorations in Computing (2012), John S. Conroy

Algorithmic Complexity:
Limits of Algorithms

A Brute-Force approach would find all itineraries and

then pick the best.

Cavan – Dublin – Cork – Galway – Cavan

Cavan

Galway

Cork

Dublin
747km

Algorithmic Complexity: Limits of Algorithms

A Brute-Force approach would find all itineraries and then pick the best.

Cavan – Dublin – Cork – Galway – Cavan 747km

834km

747km

939km

834km

939km

Cavan – Dublin – Galway – Cork – Cavan

Cavan – Galway – Cork – Dublin – Cavan

Cavan – Galway – Dublin – Cork – Cavan

Cavan – Cork – Galway – Dublin – Cavan

Cavan – Cork – Dublin – Galway – Cavan

Observations?

(Evaluation and Testing, Computational Thinking – recognising patterns)

Cavan

Galway

Cork

Dublin

Cavan

Galway

Cork

Dublin

Wexford

Limerick

Algorithmic Complexity: Limits of Algorithms

The number of possible tours of a map with n cities is (n − 1)! / 2

The number of tours grows incredibly quickly as we add cities to
the map

#cities #tours

5 12

6 60

7 360

8 2,520

9 20,160

10 181,440

The number of tours for 25 cities is
310,224,200,866,619,719,680,000

Algorithmic Complexity: Limits of Algorithms

The number of arrangements is

50,000,000,000,000,000,000,000,000,000,000

Pxt dezqlad gxykwedt chwk khxtc kdycdygd

Heuristics
An approach to problem solving.

Mental shortcuts that can be used to make a quick decision.

Heuristics are the strategies derived from previous experiences with similar problems.

Not guaranteed to be optimal (but usually take less time than would be required to find an optimal
solution). Limitations lie in the trade-offs e.g. correctness vs. performance.

Suitable when finding an optimal solution is impractical or impossible e.g. TSP heuristic may be
to pick whatever is currently the best next step regardless of whether that prevents (or even makes
impossible) good steps later (known as the greedy algorithm).

Some common examples of heuristics include trial and error, a rule of thumb, an educated guess and
intuitive judgement

Source: http://www.popflock.com/learn?s=Heuristic

http://www.popflock.com/learn?s=Heuristic

Heuristics

Commonly used heuristics from George Polya’s 1945 book,
How To Solve It:

• If you are having difficulty understanding a problem, try drawing
a picture.

• If you can't find a solution, try assuming that you have a
solution and seeing what you can derive from that ("working
backward").

• If the problem is abstract, try examining a concrete example.

• Try solving a more general problem first (the "inventor's
paradox": the more ambitious plan may have more chances of
success).

When we cannot solve a problem exactly, one common approach is to use a heuristic
instead. A heuristic is a type of algorithm that does not necessarily give a correct answer but
tends to work well in practice.

Limitations of heuristics

1. Optimality: when several solutions exist for a given problem,
does the heuristic guarantee that the best solution will be
found?

2. Completeness: When several solutions exist for a given
problem, can the heuristic find them all?

3. Accuracy and precision: Can the heuristic provide a
confidence interval for the purported solution?

4. Execution time: Is this the best-known heuristic for solving
this type of problem?

The Travelling Salesman Problem

The Secret Rules of Modern Living: Algorithms
https://www.youtube.com/watch?v=kiFfp-HAu64

https://www.youtube.com/watch?v=kiFfp-HAu64

We now turn our attention to

focus on a fundamental

question of Computer

Science:

What is computable?

Session 5:
Computers in
Society – Turing
Machines

Overview of the session

Part 1 Introduction to Turing machines

Part 2 Group activity: Turing machines

Part 3 Artificial Intelligence: The Turing test

By the end of this session participants will have:

• developed their understanding of Turing machines and
understand their significance

• of Turing machines and understand their significance

• participated in an activity to develop a deeper understanding of
how Turing machines operate

• participated in an activity on artificial intelligence

Part 1:
Introduction to
Turing Machines

A fundamental question of Computer

Science…

What is computable?

 How do we define computability?

Computability

Code breaking

Computer design

Artificial Intelligence

Turing Machines

https://www.turing.org.uk/

https://www.turing.org.uk/

Introducing Turing machines
The illustration below is of an elevator represented as a finite-state machine

Circles represent states (in this case floors).

Arrows between circles represent transitions between states.

The labels on each transition represents the button press event.

What happens when we are on the ground floor and press the UP button?

What happens when we are on the ground floor and press the DOWN button?

G 1 2
down

up

updown

down

up

Introducing Turing machines
The illustration below is of an elevator represented as a finite-state machine

Assuming we start in state 1, what would the following input sequence yield?

UU DDDD UU D

The notion of a Turing machine is not too unlike this…

Given a Finite State Machine and an input, we can determine an output

G 1 2
down

up

updown

down

up

Introducing Turing machines

https://www.youtube.com/watch?v=dNRDvLACg5Q&t=2s

https://www.youtube.com/watch?v=dNRDvLACg5Q&t=2s

Introducing Turing Machines

The Turing Machine (TM) was invented in 1936 by Alan

Turing.

It is a basic abstract symbol-manipulating device that can

be used to simulate the logic of any computer that could

possibly be constructed.

Although it was not actually constructed by Turing, its

theory yielded many insights.

Anything that is possible to (mathematically) compute

could be programmed on a Turing machine.

Turing Machines - Introduction
A Turing Machine consist of three components as follows:

1. An infinitely long tape made up of individual cells. Each cell can contain a single character – typically 1, 0,
or B (blank)

2. A read/write head pointed at an individual cell

3. A controller (aka finite-state machine) which instructs the read/write head what to do

Read/Write Head

… Infinitely long tape

Controller

Machin
e

Stat
e

Finit
e

B B 1 1 0 1 0 0 0 1 B …

A schematic representation of a Turing Machine

Turing Machines - Operation
Initially the tape is inscribed with a sequence of characters – called the input

The operation of the Turing Machine is controlled by the finite-state machine (controller).

Each transition involves:
- Reading
- Writing
- Moving
- Updating (state)

… …0 01 1 0 1For example:

The operation takes place as a sequence of steps known as transitions.

The controller decides for a given (input character, state) pair, the (output character, state) pair - know
as a transition.

Turing Machines - Operation

S1

(1, 0, R)

Transitions can be expressed using:

The above state transition table and diagram shows a single transition which says:

“When in state S1 and the symbol being read is a one, write a zero, move right and remain in state
S1”.

if (state == S1) and (character == 1):
 write 0
 move right
 set state to S1

state transition tables state transition diagramsOR

Turing Machines - Operation

S1 S2
(0, 1, R)

… …0 0B 0 1 B

… …0 0B 1 1 B

The illustration below depicts a TM which defines a transition from state S1 to S2 when the current
symbol being read in a zero.

After the transition has been completed, the symbol zero has been replaced with a 1, the read/write
head has been moved right and the new state is set to S2.

Read/Write Head

Controller

Tape

The result of the computation (output) is the sequence of characters left on the tape if and when the Turing
Machine halts.

Turing Machines – States

At any given time, a Turing Machine is said to be in a particular state. States are usually

denoted by the letter S followed by a number e.g. S2 is taken to mean state two.

S0 is conventionally used to denote the initial state. This is the state the Turing Machine is

in before it starts to operate.

A double circle is used to denote the final or halting state. This is the state the Turing

Machine is in when it finishes.

For example:

S0 S1
(B, 1 , R)(B, B, R)

(1, 1, R)

S2

A fundamental question of Computer

Science…
What is computable?

 How do we define computability?

 Answer: A task is computable if it can

 be carried out by a Turing Machine.

Part 2:
Group activity:
Turing machines

Turing Machines – Example (unary increment)

Test input: 111 (3) … …B 1B 1 1 B B B

Required output: 1111 (4) … …B 1B 1 1 1 B B

S0 S1
(B, 1 , R)(B, B, R)

(1, 1, R)

S2

Turing Machines – Example (unary increment)

Test input: 111 (3) … …B 1B 1 1 B B B

Required output: 1111 (4) … …B 1B 1 1 1 B B

S0 S1
(B, 1 , R)(B, B, R)

(1, 1, R)

S2

… …B 1B 1 1 B B BState: S0

Turing Machines – Example (unary increment)

Test input: 111 (3) … …B 1B 1 1 B B B

Required output: 1111 (4) … …B 1B 1 1 1 B B

S0 S1
(B, 1 , R)(B, B, R)

(1, 1, R)

S2

… …B 1B 1 1 B B BState: S1

Turing Machines – Example (unary increment)

Test input: 111 (3) … …B 1B 1 1 B B B

Required output: 1111 (4) … …B 1B 1 1 1 B B

S0 S1
(B, 1 , R)(B, B, R)

(1, 1, R)

S2

… …B 1B 1 1 B B BState: S1

Turing Machines – Example (unary increment)

Test input: 111 (3) … …B 1B 1 1 B B B

Required output: 1111 (4) … …B 1B 1 1 1 B B

S0 S1
(B, 1 , R)(B, B, R)

(1, 1, R)

S2

… …B 1B 1 1 B B BState: S1

Turing Machines – Example (unary increment)

Test input: 111 (3) … …B 1B 1 1 B B B

Required output: 1111 (4) … …B 1B 1 1 1 B B

S0 S1
(B, 1 , R)(B, B, R)

(1, 1, R)

S2

… …B 1B 1 1 B B BState: S1

Turing Machines – Example (unary increment)

Test input: 111 (3) … …B 1B 1 1 B B B

Required output: 1111 (4) … …B 1B 1 1 1 B B

S0 S1
(B, 1 , R)(B, B, R)

(1, 1, R)

S2

… …B 1B 1 1 1 B BState: S2

Turing Machine Activity

Each group will trace through the operation
of the Turing Machines assigned.

Think

Pair

Share

Square

P8

Turing Machines – Activity – Problem #1

Test input: B111B … …B 11 1 B

Initial State: S0 S0 S1
(B, B, R)

S2

(B, B , R)

(1, B , R)

Turing Machines – Activity – Problem #2

Test input: 111011 … …1 1B 1 0 1 1 B

Initial State: S0 S3S0 S1 S2
(B, B , L) (1, B , R)

(1, 1, R)

(0, 1, R)

(1, 1, R)

Turing Machines – Activity – Problem #3

Test input: B011001B … …0 1B 1 0 0 1 B

Initial State: S0 S0 S1 S2
(B, B , L) (B, B, R)

(0, 1, R)

S3

(1, 0 , R)

(0, 1 , R)

(1, 0, R)

(0, 0, L)

(1, 1, L)

Turing Machines – Activity – Problem #4

Test input: B11001BB

Initial State: S0

Part 3:
Artificial
Intelligence

Source: https://www.storyofmathematics.com/20th_turing.html

The Turing Test

https://www.storyofmathematics.com/20th_turing.html

A Test

https://www.youtube.com/watch?v=ijwHj2HaOT0&t=244s

https://www.youtube.com/watch?v=ijwHj2HaOT0&t=244s

Session 6:
Curriculum
Planning

Overview of the session

Part 1 Introduction to Curriculum Planning

Part 2 Group activity: experiencing LOs through the lens of the ALTs

Part 3 Presenting a Curriculum Planning tool

Part 4 Wrap up and conclusions

By the end of this session participants will
have:

• reflected on the LOs that have been experienced through the ALTs
up to now

• collaborated on Bubbl.us to develop a concept map of the LOs
that have been and could be experienced through a particular
ALT

• given and received feedback on the potential LOs that could be
experienced through a particular ALT

• engaged with and used bespoke spreadsheet technology to
enhance ALT planning practice alongside concept mapping ideas

Semantic Waves

https://teachinglondoncomputing.org/semantic-waves/semantic-waves-tip9/

https://teachinglondoncomputing.org/semantic-waves/semantic-waves-tip9/

Bubble Sort Dance

https://youtu.be/Iv3vgjM8Pv4

https://youtu.be/Iv3vgjM8Pv4

Part 1:
Introduction to
Curriculum
Planning

Leaving Certificate Computer Science

The strand 3 applied learning tasks that students undertake

collaboratively during the two years of the course, provide

significant engaging opportunities for students to work within

the practices and principles of computer science and to apply

the core concepts in authentic situations.

(Computer Science Curriculum Specification Pg. 15)

Part 2:
Experiencing LOs
through the lens
of the ALTs

Considering curriculum planning

What learning outcomes are we hoping our
students will experience – or build towards – in this
ALT?

What learning experiences can we offer to our
students to achieve this?

What stimulus can we provide to enhance the
learning?

What unique considerations should we make for our
particular context (class schedule, access to
technology, individual student need and, specifically,
considerations of Special Education Needs)?

Group activity: Developing a mind map
for an ALT
Click on the link to the Bubbl.us template
for your particular ALT

Nominate a spokesperson

Reflect and discuss the LOs your students
have experienced (and could experience in
the future) through the lens of this ALT

Add these LOs to the mind map at the
appropriate node

Add learning experiences to your mind
map that incorporate these LOs

Prepare feedback for the main group

Group Activity Feedback

Click on the link to the Bubbl.us template
for your particular ALT

Nominate a spokesperson

Reflect and discuss the LOs your students
have experienced (and could experience in
the future) through the lens of this ALT

Add these LOs to the mind map at the
appropriate node

Add learning experiences to your mind
map that incorporate these LOs

Prepare feedback for the main group

Part 3:
Introduction to a
curriculum
planning tool

Using the curriculum planning tool

• https://tinyurl.com/LCCSplanning

https://tinyurl.com/LCCSplanning

Part 4:
Wrap-up and
conclusions

Conclusions

LCCS is difficult (for students to learn and teachers to teach)

Pedagogies are proven to work

Planning learning around ALTs is key

Constructivist approach is important

Growth mindset is at least as important as natural ability

Student-centric approach (guide-on-the-side rather than a sage-on-the-stage approach)

“The teacher should help, but not too much and not too little, so that the student shall have a
reasonable share of the work” and, “If the student is not able to do much, the teacher should
leave him at least with some illusion of independent work.”

George Polya, “How To Solve It“

	Slide 1: National Workshop 7
	Slide 2: Workshop Overview
	Slide 3: Key Messages
	Slide 4: Supports Provided by Oide
	Slide 5: CPD Supports
	Slide 6: NW7 Session 1: Computational Thinking V
	Slide 7: Overview of the session
	Slide 8: WARM UP
	Slide 9: What is Computational Thinking?
	Slide 10
	Slide 11: Computational Thinking: Daily Examples
	Slide 12: Why is Computational Thinking important?
	Slide 13
	Slide 14: How to teach Computational Thinking?
	Slide 15: Computational Thinking and Problem Solving
	Slide 16: Applying Computational Thinking Skills
	Slide 17
	Slide 18: George Boole
	Slide 19: Group Activity
	Slide 20: Einstein’s Riddle
	Slide 21: Halloween Puzzle
	Slide 23
	Slide 24
	Slide 25
	Slide 26: Cut Hive Logic Puzzles
	Slide 27: Cut Hive Logic Puzzles
	Slide 28
	Slide 29
	Slide 30
	Slide 31: Bertrand’s Box Problem
	Slide 32: Bertrand’s Box Problem
	Slide 33: Bertrand’s Box Problem
	Slide 34: Bertrand’s Box Problem
	Slide 35
	Slide 36: Group Activity
	Slide 37: Group Activity
	Slide 38: Role play
	Slide 39: Successful Pedagogies
	Slide 40: Conclusion
	Slide 41
	Slide 42: NW7 Session 2: Formative Assessment for LCCS
	Slide 43: Overview of the session
	Slide 44: By the end of this session participants will have:
	Slide 45: Part 1: Significance of Assessment
	Slide 46: Digital Strategy for Schools
	Slide 47: Looking at Our School 2022
	Slide 48: Looking at Our School 2022
	Slide 49: Part 2: Formative Assessment including effective feedback
	Slide 50: Defining assessment
	Slide 51: Formative Assessment
	Slide 52: Formative Assessment Principles
	Slide 53: Learning Intentions and Success Criteria
	Slide 54: What is a Learning Intention?
	Slide 55: Learning Intentions should…
	Slide 56: Example of a Learning Intention
	Slide 57: What are Success Criteria?
	Slide 58: Success Criteria should…
	Slide 59: Success Criteria could be…
	Slide 60: Learning Intention to Success Criteria
	Slide 61: Personal Reflection
	Slide 62: Formative Assessment Principles
	Slide 63: Formative Feedback
	Slide 64: The Importance of Feedback on Learning
	Slide 65: Effective Feedback
	Slide 66: Personal Reflection
	Slide 67: NCCA’s Workshop Series
	Slide 68: Part 3: Formative Assessment using Digital Portfolios(FADP) initiative
	Slide 69: What are Digital Portfolios?
	Slide 70: Elements of a Digital Portfolio
	Slide 71: Formative Assessment using Digital Portfolios Process
	Slide 72: Part 4: Digital Tools for Assessment in LCCS
	Slide 73: Types of Formative Feedback
	Slide 74: Benefits of Using Digital Tools for Feedback
	Slide 75: Digital Tools for Formative Feedback
	Slide 76: Home Expert Activity: Digital Tools for Assessment in the LCCS Classroom
	Slide 77: Session 3: Computer Systems IV
	Slide 78: Computer Systems and the Specification
	Slide 79: LCCS Learning Outcomes
	Slide 80: Layers of a Computing System
	Slide 81: Group Activity
	Slide 82: Data Representation
	Slide 83: Data Representation
	Slide 84: Data Representation
	Slide 85: Abstraction inside the computer
	Slide 86: Computer Components
	Slide 87: What Makes a Computer, a Computer?
	Slide 88: Von Neumann Architecture
	Slide 89: Activity: Von Neumann Architecture
	Slide 90: Registers
	Slide 91: The von Neumann Architecture of a Computer
	Slide 92: The Fetch-Execute Cycle
	Slide 93: Little Man Computer
	Slide 94: Little Man Computer
	Slide 95: Operating Systems
	Slide 96: Layers of an OS
	Slide 97: Functions of an Operating System
	Slide 98: Operating System
	Slide 99: Programming Languages
	Slide 100: High-level vs Low-level
	Slide 101: Artificial Intelligence
	Slide 102: Computer Network Protocols
	Slide 103: Protocols
	Slide 104: Computer protocols
	Slide 105: Communication protocols
	Slide 106: Internet Protocols
	Slide 107: Communication protocols
	Slide 108: National Workshop 7
	Slide 109: Workshop Overview
	Slide 110: Session 4: Algorithms IV
	Slide 111: Overview of the session
	Slide 112: By the end of this session participants will have:
	Slide 113: Part 1: Recap on Algorithms
	Slide 114: Algorithms and the Specification
	Slide 115: LCCS Learning Outcomes
	Slide 116: What is an algorithm?
	Slide 117: What is an algorithm?
	Slide 118: Part 2: Algorithmic Complexity
	Slide 119: Algorithmic Complexity
	Slide 120: Time Complexity
	Slide 121: Big-O
	Slide 122: Big-O
	Slide 123: Summary: Algorithmic Time Complexity
	Slide 124: Part 3: Analysis of Searching and Sorting Algorithms
	Slide 125: Sorting and Searching
	Slide 126: Linear Search
	Slide 127: Binary Search
	Slide 128: Binary Search
	Slide 129: Group Activity: Analysis of Search Algorithms
	Slide 130: Activity #1: Analysis of Search Algorithms
	Slide 131: Activity #2: Counting Operations
	Slide 132: Activity #3: Analysis of Sort Algorithms
	Slide 133: References
	Slide 134: Part 4: Limits of Algorithms & Heuristic
	Slide 135: Algorithmic Complexity: Limits of Algorithms
	Slide 136: Real World Applications
	Slide 137: Algorithmic Complexity: Limits of Algorithms
	Slide 138: Algorithmic Complexity: Limits of Algorithms
	Slide 139: Algorithmic Complexity: Limits of Algorithms
	Slide 140: Algorithmic Complexity: Limits of Algorithms
	Slide 141: Heuristics
	Slide 142: Heuristics
	Slide 143: Limitations of heuristics
	Slide 144: The Travelling Salesman Problem
	Slide 145
	Slide 146: Session 5: Computers in Society – Turing Machines
	Slide 147: Overview of the session
	Slide 148: By the end of this session participants will have:
	Slide 149: Part 1: Introduction to Turing Machines
	Slide 150: A fundamental question of Computer Science…
	Slide 151: Turing Machines
	Slide 152: Introducing Turing machines
	Slide 153: Introducing Turing machines
	Slide 154: Introducing Turing machines
	Slide 155: Introducing Turing Machines
	Slide 156: Turing Machines - Introduction
	Slide 157: Turing Machines - Operation
	Slide 158: Turing Machines - Operation
	Slide 159: Turing Machines - Operation
	Slide 160: Turing Machines – States
	Slide 161: A fundamental question of Computer Science…
	Slide 162: Part 2: Group activity: Turing machines
	Slide 163: Turing Machines – Example (unary increment)
	Slide 164: Turing Machines – Example (unary increment)
	Slide 165: Turing Machines – Example (unary increment)
	Slide 166: Turing Machines – Example (unary increment)
	Slide 167: Turing Machines – Example (unary increment)
	Slide 168: Turing Machines – Example (unary increment)
	Slide 169: Turing Machines – Example (unary increment)
	Slide 170: Turing Machine Activity
	Slide 171: Turing Machines – Activity – Problem #1
	Slide 172: Turing Machines – Activity – Problem #2
	Slide 173: Turing Machines – Activity – Problem #3
	Slide 174: Turing Machines – Activity – Problem #4
	Slide 175: Part 3: Artificial Intelligence
	Slide 176: The Turing Test
	Slide 177: A Test
	Slide 178: Session 6: Curriculum Planning
	Slide 179: Overview of the session
	Slide 180: By the end of this session participants will have:
	Slide 181: Semantic Waves
	Slide 182: Bubble Sort Dance
	Slide 183: Part 1: Introduction to Curriculum Planning
	Slide 184: Leaving Certificate Computer Science
	Slide 185: Part 2: Experiencing LOs through the lens of the ALTs
	Slide 186: Considering curriculum planning
	Slide 187
	Slide 188: Group activity: Developing a mind map for an ALT
	Slide 189: Group Activity Feedback
	Slide 190: Part 3: Introduction to a curriculum planning tool
	Slide 191: Using the curriculum planning tool
	Slide 192: Part 4: Wrap-up and conclusions
	Slide 193: Conclusions

